在介绍10种操作前,先简要介绍下channel的使用场景、基本操作和注意事项。

channel的使用场景

把channel用在数据流动的地方

  1. 消息传递、消息过滤
  2. 信号广播
  3. 事件订阅与广播
  4. 请求、响应转发
  5. 任务分发
  6. 结果汇总
  7. 并发控制
  8. 同步与异步
  9. ...

channel的基本操作和注意事项

3种状态
nil
3种操作
  1. 关闭
9种情况

下面介绍使用channel的10种常用操作。

1. 使用for range读channel

for-range
for x := range ch{
    fmt.Println(x)
}
_,ok
oktruefalse
if v, ok := <- ch; ok {
    fmt.Println(v)
}

3. 使用select处理多个channel

select
// 分配job时,如果收到关闭的通知则退出,不分配job
func (h *Handler) handle(job *Job) {
    select {
    case h.jobCh<-job:
        return 
    case <-h.stopCh:
        return
    }
}

4. 使用channel的声明控制读写权限

  • 场景:协程对某个通道只读或只写时
  • 目的:A. 使代码更易读、更易维护,B. 防止只读协程对通道进行写数据,但通道已关闭,造成panic。
  • 用法:

    • 如果协程对某个channel只有写操作,则这个channel声明为只写。
    • 如果协程对某个channel只有读操作,则这个channe声明为只读。
// 只有generator进行对outCh进行写操作,返回声明
// <-chan int,可以防止其他协程乱用此通道,造成隐藏bug
func generator(int n) <-chan int {
    outCh := make(chan int)
    go func(){
        for i:=0;i<n;i++{
            outCh<-i
        }
    }()
    return outCh
}
 
// consumer只读inCh的数据,声明为<-chan int
// 可以防止它向inCh写数据
func consumer(inCh <-chan int) {
    for x := range inCh {
        fmt.Println(x)
    }
}

5. 使用缓冲channel增强并发和异步

  • 场景:异步和并发
  • 原理:A. 有缓冲通道是异步的,无缓冲通道是同步的,B. 有缓冲通道可供多个协程同时处理,在一定程度可提高并发性。
  • 用法:
// 使用5个`do`协程同时处理输入数据
func test() {
    inCh := generator(100)
    outCh := make(chan int, 10)
 
    for i := 0; i < 5; i++ {
        go do(inCh, outCh)
    }
 
    for r := range outCh {
        fmt.Println(r)
    }
}
 
func do(inCh <-chan int, outCh chan<- int) {
    for v := range inCh {
        outCh <- v * v
    }
}

6. 为操作加上超时

selecttime.After
func doWithTimeOut(timeout time.Duration) (int, error) {
    select {
    case ret := <-do():
        return ret, nil
    case <-time.After(timeout):
        return 0, errors.New("timeout")
    }
}
 
func do() <-chan int {
    outCh := make(chan int)
    go func() {
        // do work
    }()
    return outCh
}

7. 使用time实现channel无阻塞读写

  • 场景:并不希望在channel的读写上浪费时间
  • 原理:是为操作加上超时的扩展,这里的操作是channel的读或写
  • 用法:
func unBlockRead(ch chan int) (x int, err error) {
    select {
    case x = <-ch:
        return x, nil
    case <-time.After(time.Microsecond):
        return 0, errors.New("read time out")
    }
}
 
func unBlockWrite(ch chan int, x int) (err error) {
    select {
    case ch <- x:
        return nil
    case <-time.After(time.Microsecond):
        return errors.New("read time out")
    }
}
close(ch)
chclose(ch)
func (h *Handler) Stop() {
    close(h.stopCh)
 
    // 可以使用WaitGroup等待所有协程退出
}
 
// 收到停止后,不再处理请求
func (h *Handler) loop() error {
    for {
        select {
        case req := <-h.reqCh:
            go handle(req)
        case <-h.stopCh:
            return
        }
    }
}
chan struct{}
  • 场景:使用channel传递信号,而不是传递数据时
  • 原理:没数据需要传递时,传递空struct
  • 用法:
// 上例中的Handler.stopCh就是一个例子,stopCh并不需要传递任何数据
// 只是要给所有协程发送退出的信号
type Handler struct {
    stopCh chan struct{}
    reqCh chan *Request
}

10. 使用channel传递结构体的指针而非结构体

  • 场景:使用channel传递结构体数据时
  • 原理:channel本质上传递的是数据的拷贝,拷贝的数据越小传输效率越高,传递结构体指针,比传递结构体更高效
  • 用法:
reqCh chan *Request
 
// 好过
reqCh chan Request

本文来自:Segmentfault