“结巴”中文分词:做最好的 Python 中文分词组件 
github:https://github.com/fxsjy/jieba
- 支持三种分词模式: - 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
 
- 支持繁体分词 
- 支持自定义词典
- MIT 授权协议
代码对 Python 2/3 均兼容
easy_install jiebapip install jiebapip3 install jiebapython setup.py installimport jieba- 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
- 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
1. 分词
jieba.cutjieba.cut_for_searchjieba.cutjieba.cut_for_searchjieba.lcutjieba.lcut_for_searchjieba.Tokenizer(dictionary=DEFAULT_DICT)jieba.dt代码示例
# encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))  # 精确模式
seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print(", ".join(seg_list))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print(", ".join(seg_list))输出:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
2. 添加自定义词典
载入词典
dict.txtfile_name例如:
创新办 3 i
云计算 5
凱特琳 nz
台中jieba.dttmp_dircache_file调整词典
add_word(word, freq=None, tag=None)del_word(word)suggest_freq(segment, tune=True)代码示例:
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('中', '将'), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开3. 关键词提取
基于 TF-IDF 算法的关键词抽取
import jieba.analyse- jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
- sentence 为待提取的文本
- topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
- withWeight 为是否一并返回关键词权重值,默认值为 False
- allowPOS 仅包括指定词性的词,默认值为空,即不筛选
 
- jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件
代码示例 (关键词提取)
关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
- 用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径
- 用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
关键词一并返回关键词权重值示例
基于 TextRank 算法的关键词抽取
- jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。
- jieba.analyse.TextRank() 新建自定义 TextRank 实例
基本思想:
- 将待抽取关键词的文本进行分词
- 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
- 计算图中节点的PageRank,注意是无向带权图
使用示例:
4. 词性标注
jieba.posseg.POSTokenizer(tokenizer=None)tokenizerjieba.Tokenizerjieba.posseg.dt>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for word, flag in words:
...    print('%s %s' % (word, flag))
...
我 r
爱 v
北京 ns
天安门 ns5. 并行分词
jieba.enable_parallel(4)jieba.disable_parallel()jieba.dtjieba.posseg.dt6. Tokenize:返回词语在原文的起止位置
- 注意,输入参数只接受 unicode
- 默认模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限公司            start: 6                end:10
- 搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限                start: 6                end:8
word 公司                start: 8                end:10
word 有限公司            start: 6                end:107. ChineseAnalyzer for Whoosh 搜索引擎
from jieba.analyse import ChineseAnalyzer8. 命令行分词
python -m jieba news.txt > cut_result.txt命令行选项(翻译):
使用: python -m jieba [options] filename
结巴命令行界面。
固定参数:
  filename              输入文件
可选参数:
  -h, --help            显示此帮助信息并退出
  -d [DELIM], --delimiter [DELIM]
                        使用 DELIM 分隔词语,而不是用默认的' / '。
                        若不指定 DELIM,则使用一个空格分隔。
  -p [DELIM], --pos [DELIM]
                        启用词性标注;如果指定 DELIM,词语和词性之间
                        用它分隔,否则用 _ 分隔
  -D DICT, --dict DICT  使用 DICT 代替默认词典
  -u USER_DICT, --user-dict USER_DICT
                        使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
  -a, --cut-all         全模式分词(不支持词性标注)
  -n, --no-hmm          不使用隐含马尔可夫模型
  -q, --quiet           不输出载入信息到 STDERR
  -V, --version         显示版本信息并退出
如果没有指定文件名,则使用标准输入。
--help$> python -m jieba --help
Jieba command line interface.
positional arguments:
  filename              input file
optional arguments:
  -h, --help            show this help message and exit
  -d [DELIM], --delimiter [DELIM]
                        use DELIM instead of ' / ' for word delimiter; or a
                        space if it is used without DELIM
  -p [DELIM], --pos [DELIM]
                        enable POS tagging; if DELIM is specified, use DELIM
                        instead of '_' for POS delimiter
  -D DICT, --dict DICT  use DICT as dictionary
  -u USER_DICT, --user-dict USER_DICT
                        use USER_DICT together with the default dictionary or
                        DICT (if specified)
  -a, --cut-all         full pattern cutting (ignored with POS tagging)
  -n, --no-hmm          don't use the Hidden Markov Model
  -q, --quiet           don't print loading messages to stderr
  -V, --version         show program's version number and exit
If no filename specified, use STDIN instead.
延迟加载机制
import jiebajieba.Tokenizer()import jieba
jieba.initialize()  # 手动初始化(可选)
在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
jieba.set_dictionary('data/dict.txt.big')
jieba.set_dictionary('data/dict.txt.big')结巴分词 Java 版本
结巴分词 C++ 版本
结巴分词 Node.js 版本
结巴分词 Erlang 版本
结巴分词 R 版本
结巴分词 iOS 版本
结巴分词 PHP 版本
结巴分词 .NET(C#) 版本
结巴分词 Go 版本
系统集成 分词速度- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
1. 模型的数据是如何生成的?
2. “台中”总是被切成“台 中”?(以及类似情况)
P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低
解决方法:强制调高词频
jieba.add_word('台中')jieba.suggest_freq('台中', True)3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况)
解决方法:强制调低词频
jieba.suggest_freq(('今天', '天气'), True)jieba.del_word('今天天气')4. 切出了词典中没有的词语,效果不理想?
解决方法:关闭新词发现
jieba.cut('丰田太省了', HMM=False)jieba.cut('我们中出了一个叛徒', HMM=False)