在《Go精妙的互斥锁设计》一文中,我们详细地讲解了互斥锁的实现原理。互斥锁为了避免竞争条件,它只允许一个线程进入代码临界区,而由于锁竞争的存在,程序的执行效率会被降低。同时我们知道,只有多线程在共享资源中有写操作,才会引发竞态问题,只要资源没有发生变化,多线程读取相同的资源就是安全的。因此,我们引申出更细粒度的锁:读写锁。

什么是读写锁

读写锁是一种多读单写锁,分读和写两种锁,多个线程可以同时加读锁,但是写锁和写锁、写锁与读锁之间是互斥的。

读写锁对临界区的处理如上图所示。其中,t1时刻,由于线程1已加写锁,线程2被互斥等待写锁的释放;t2时刻,线程2已加读锁,线程3可以对其继续加读锁并进入临界区;t3时刻,线程3加了读锁,线程4被互斥等待读锁的释放。

饥饿问题

根据读写锁的性质,读者应该能猜到读写锁适用于读写分明的场景。根据优先级,可以分为读优先锁和写优先锁。读优先锁能允许最大并发,但是写线程可能被饿死;同理,写优先锁是优先服务写线程,这样读线程就可能被饿死。

相对而言,写锁饥饿的问题更为突出。因为读锁是共享的,如果当前临界区已经加了读锁,后续的线程继续加读锁是没问题的,但是如果一直有读锁的线程加锁,那尝试加写锁的线程则会一直获取不到锁,这样加写锁的线程一直被阻塞,导致了写锁饥饿。

同时,由于多读锁共享,可能会有读者问:为什么不直接去掉读锁,在写操作线程进来时只加写锁就好了呢,这样岂不是很好实现了。道理很简单,如果当前临界区加了写锁,在写锁解开之前又有新的写操作线程进来,等到写锁释放,新的写操作线程又上了写锁。这种情况如果连续不断,那整个程序就只能执行写操作线程,读操作线程就活活被饿死了。

所以,为了避免饥饿问题,通用的做法是实现公平读写锁,它将请求锁的线程用队列进行排队,保证了先入先出(FIFO)的原则进行加锁,这样就能有效地避免线程饥饿问题。

那Go语言的读写锁,对于饥饿问题,它是如何处理的呢?

Go读写锁设计

sync.RWMutex
wsync.MutexwriterSemreaderSemreaderCountreaderWait
sync.RWMutex
RLock()RUnlock()Lock()Unlock()

下面,我们来依次分析。

加读锁

if race.Enabled {}
atomic.AddInt32LOCKrw.readerCountruntime_SemacquireMutex
rw.readerCount
rw.readerCount

解读锁

rrrUnlockSlow
r+1==0rwmutexMaxReaders = 1 << 30r+1 == -rwmutexMaxReaders
rw.readerWaitruntime_Semrelease

读者此时只看了加解读锁的代码,理解上会有困难,不要急,我们接着看加解写锁的逻辑。

加写锁

在加写锁时,首先会通过互斥锁加锁,这保证只会有一个写锁加锁成功。当互斥锁加锁成功之后,我们就能看到写操作是如何阻止读操作,读操作是如何感知到写操作的。

rw.readerCountrw.readerCount
atomic.AddInt32readerCountreaderCount

这里需要格外注意的是:互斥锁加锁成功并不意味着加写锁成功。我们需要知道读操作是如何阻止写操作,写操作是如何感知到读操作的。

r != 0atomic.AddInt32rw.readerCountrw.readerWaitruntime_SemacquireMutexrw.readerCountrw.readerWaitrw.readerWait

解写锁

在解写锁时,将负值的rw.readerCount变更为正值,解除对读锁的互斥,并唤醒r个因为写锁而阻塞的读操作goroutine。最后,通过调用互斥锁的Unlock方法,解除对写锁的互斥。

到这里,我们可以图解一下Go是如何解决饥饿问题的

rw.readerCountrw.readerCountrw.readerCountrw.readerCountrw.readerCount

总结

读写锁基于互斥锁,提供了更细粒度的控制,它适用于读写分明的场景,准确而言是读操作远多于写操作的情况。在多读少写的场景中,使用读写锁替代互斥锁能有效地提高程序运行效率。

读读共享、读写互斥和写写互斥。在优先级方面,偏袒读锁或者写锁要分几种情况。

atomic.AddInt32

因为读写锁是基于互斥锁之上的设计,不可避免地多做了一些工作。因此,并不是说使用读写锁的收益一定会比互斥锁高。在选择何种锁时,需要综合考量读写操作的比例,临界区代码的耗时。性能比对的内容本文就不再讨论,读者可自行测试。