前言
asongGochannelGosyncchannel
Golang
Go语言互斥锁设计实现
mutex介绍
syncmutexLock()Unlock()Go1.18TryLock()
Lock()LockgoroutinepanicUnlock()UnLockpanictryLock()TryLock
mutex
type Mutex struct {
state int32
sema uint32
}
statesemagoroutine
statemutexedmutexWokenmutexStarvinggoroutine
const (
mutexLocked = 1 << iota // 示意互斥锁的锁定状态
mutexWoken // 示意从失常模式被从唤醒
mutexStarving // 以后的互斥锁进入饥饿状态
mutexWaiterShift = iota // 以后互斥锁上期待者的数量
)
mutexgouroutinegoroutinegoroutineGo1.9goroutine1msgoroutine
mutexmutex
Lock加锁
Lock
func (m *Mutex) Lock() {
// 判断以后锁的状态,如果锁是齐全闲暇的,即m.state为0,则对其加锁,将m.state的值赋为1
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
return
}
// Slow path (outlined so that the fast path can be inlined)
m.lockSlow()
}
下面的代码次要两局部逻辑:
CASstategoroutinelockSlowgoroutinelockSlow
lockSlowfor
CAS
初始化状态
locakSlow
func (m *Mutex) lockSlow() {
var waitStartTime int64
starving := false
awoke := false
iter := 0
old := m.state
........
}
waitStartTimewaiterstarvingawokegoroutineiterold
自旋
自旋的判断条件十分刻薄:
for {
// 判断是否容许进入自旋 两个条件,条件1是以后锁不能处于饥饿状态
// 条件2是在runtime_canSpin内实现,其逻辑是在多核CPU运行,自旋的次数小于4
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
// !awoke 判断以后goroutine不是在唤醒状态
// old&mutexWoken == 0 示意没有其余正在唤醒的goroutine
// old>>mutexWaiterShift != 0 示意期待队列中有正在期待的goroutine
// atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) 尝试将以后锁的低2位的Woken状态位设置为1,示意已被唤醒, 这是为了告诉在解锁Unlock()中不要再唤醒其余的waiter了
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
// 设置以后goroutine唤醒胜利
awoke = true
}
// 进行自旋
runtime_doSpin()
// 自旋次数
iter++
// 记录以后锁的状态
old = m.state
continue
}
}
goroutinemutex
old&(mutexLocked|mutexStarving) == mutexLocked
mutexLocked
mutexStarving
mutexLocked|mutexStarving&
runtime_canSpin()
// / go/go1.18/src/runtime/proc.go
const active_spin = 4
func sync_runtime_canSpin(i int) bool {
if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
return false
}
if p := getg().m.p.ptr(); !runqempty(p) {
return false
}
return true
}
自旋条件如下:
CPUGOMAXPROCS>1
goroutineruntime_doSpin
const active_spin_cnt = 30
func sync_runtime_doSpin() {
procyield(active_spin_cnt)
}
// asm_amd64.s
TEXT runtime·procyield(SB),NOSPLIT,$0-0
MOVL cycles+0(FP), AX
again:
PAUSE
SUBL $1, AX
JNZ again
RET
30PAUSECPUCPU
这就是整个自旋操作的逻辑,这个就是为了优化 期待阻塞->唤醒->参加抢占锁这个过程不高效,所以应用自旋进行优化,在冀望在这个过程中锁被开释。
抢锁筹备冀望状态
mutexLockedmutexStarvingmutexWokenmutexWaiterShift
mutexLocked
// 基于old状态申明到一个新状态
new := old
// 新状态处于非饥饿的条件下才能够加锁
if old&mutexStarving == 0 {
new |= mutexLocked
}
mutexWaiterShift
//如果old曾经处于加锁或者饥饿状态,则期待者依照FIFO的程序排队
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
}
mutexStarving
// 如果以后锁处于饥饿模式,并且已被加锁,则将低3位的Starving状态位设置为1,示意饥饿
if starving && old&mutexLocked != 0 {
new |= mutexStarving
}
mutexWoken
// 以后goroutine的waiter被唤醒,则重置flag
if awoke {
// 唤醒状态不统一,间接抛出异样
if new&mutexWoken == 0 {
throw("sync: inconsistent mutex state")
}
// 新状态革除唤醒标记,因为前面的goroutine只会阻塞或者抢锁胜利
// 如果是挂起状态,那就须要期待其余开释锁的goroutine来唤醒。
// 如果其余goroutine在unlock的时候发现Woken的地位不是0,则就不会去唤醒,那该goroutine就无奈在被唤醒后加锁
new &^= mutexWoken
}
CAS
CAS
// 这里尝试将锁的状态更新为冀望状态
if atomic.CompareAndSwapInt32(&m.state, old, new) {
// 如果原来锁的状态是没有加锁的并且不处于饥饿状态,则示意以后goroutine曾经获取到锁了,间接推出即可
if old&(mutexLocked|mutexStarving) == 0 {
break // locked the mutex with CAS
}
// 到这里就示意goroutine还没有获取到锁,waitStartTime是goroutine开始期待的工夫,waitStartTime != 0就示意以后goroutine曾经期待过了,则须要将其搁置在期待队列队头,否则就排到队列队尾
queueLifo := waitStartTime != 0
if waitStartTime == 0 {
waitStartTime = runtime_nanotime()
}
// 阻塞期待
runtime_SemacquireMutex(&m.sema, queueLifo, 1)
// 被信号量唤醒后查看以后goroutine是否应该示意为饥饿
// 1. 以后goroutine曾经饥饿
// 2. goroutine曾经期待了1ms以上
starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
// 再次获取以后锁的状态
old = m.state
// 如果以后处于饥饿模式,
if old&mutexStarving != 0 {
// 如果以后锁既不是被获取也不是被唤醒状态,或者期待队列为空 这代表锁状态产生了不统一的问题
if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
throw("sync: inconsistent mutex state")
}
// 以后goroutine曾经获取了锁,期待队列-1
delta := int32(mutexLocked - 1<<mutexWaiterShift
// 以后goroutine非饥饿状态 或者 期待队列只剩下一个waiter,则退出饥饿模式(革除饥饿标识位)
if !starving || old>>mutexWaiterShift == 1 {
delta -= mutexStarving
}
// 更新状态值并停止for循环,拿到锁退出
atomic.AddInt32(&m.state, delta)
break
}
// 设置以后goroutine为唤醒状态,且重置自璇次数
awoke = true
iter = 0
} else {
// 锁被其余goroutine占用了,还原状态持续for循环
old = m.state
}
CASruntime.sync_runtime_SemacquireMutexgoroutineruntime.sync_runtime_SemacquireMutexgoroutinegoroutinegoroutine
解锁
UnLock
func (m *Mutex) Unlock() {
// Fast path: drop lock bit.
new := atomic.AddInt32(&m.state, -mutexLocked)
if new != 0 {
// Outlined slow path to allow inlining the fast path.
// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
m.unlockSlow(new)
}
}
AddInt320goroutineunlockSlow
func (m *Mutex) unlockSlow(new int32) {
// 这里示意解锁了一个没有上锁的锁,则间接产生panic
if (new+mutexLocked)&mutexLocked == 0 {
throw("sync: unlock of unlocked mutex")
}
// 失常模式的开释锁逻辑
if new&mutexStarving == 0 {
old := new
for {
// 如果没有期待者则间接返回即可
// 如果锁处于加锁的状态,示意曾经有goroutine获取到了锁,能够返回
// 如果锁处于唤醒状态,这表明有期待的goroutine被唤醒了,不必尝试获取其余goroutine了
// 如果锁处于饥饿模式,锁之后会间接给期待队头goroutine
if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
return
}
// 抢占唤醒标记位,这里是想要把锁的状态设置为被唤醒,而后waiter队列-1
new = (old - 1<<mutexWaiterShift) | mutexWoken
if atomic.CompareAndSwapInt32(&m.state, old, new) {
// 抢占胜利唤醒一个goroutine
runtime_Semrelease(&m.sema, false, 1)
return
}
// 执行抢占不胜利时从新更新一下状态信息,下次for循环持续解决
old = m.state
}
} else {
// 饥饿模式开释锁逻辑,间接唤醒期待队列goroutine
runtime_Semrelease(&m.sema, true, 1)
}
}
goroutinefunc runtime_Semrelease(s *uint32, handoff bool, skipframes int)handoff is true, pass count directly to the first waiter.
非阻塞加锁
Go1.18TryLock()
func (m *Mutex) TryLock() bool {
// 记录以后状态
old := m.state
// 处于加锁状态/饥饿状态间接获取锁失败
if old&(mutexLocked|mutexStarving) != 0 {
return false
}
// 尝试获取锁,获取失败间接获取失败
if !atomic.CompareAndSwapInt32(&m.state, old, old|mutexLocked) {
return false
}
return true
}
TryLock
- 判断以后锁的状态,如果锁处于加锁状态或饥饿状态间接获取锁失败
- 尝试获取锁,获取失败间接获取锁失败
TryLock
总结
通读源码后你会发现互斥锁的逻辑真的十分复杂,代码量尽管不多,然而很难以了解,一些细节点还须要大家多看看几遍能力了解其为什么这样做,文末咱们再总结一下互斥锁的知识点:
goroutinegoroutineGo1.9goroutine1msMutexgoroutine1msMutexgoroutinegoroutineunlockedslowmutexLockedgoroutineMutexMutexLock
本文之后你对互斥锁有什么不了解的吗?欢送评论区批评指正~;
好啦,本文到这里就完结了,我是asong,咱们下期见。
欢送关注公众号:Golang梦工厂