来自公众号:新世界杂货铺
前言
继Go中的HTTP申请之——HTTP1.1申请流程剖析之后,两头断断续续,历时近一月,终于才敢开始码字写下本文。
浏览倡议
HTTP2.0在建设TCP连贯和平安的TLS传输通道与HTTP1.1的流程基本一致。所以笔者倡议没有看过Go中的HTTP申请之——HTTP1.1申请流程剖析这篇文章的先去补一下课,本文会基于前一篇文章仅介绍和HTTP2.0相干的逻辑。
(*Transport).roundTrip
(*Transport).roundTript.nextProtoOnce.Do(t.onceSetNextProtoDefaults)TLSClientConfigh2transport
TLSClientConfig: 初始化client反对的http协定, 并在tls握手时告知server。
h2transport: 如果本次申请是http2,那么h2transport会接管连贯,申请和响应的解决逻辑。
上面看看源码:
func (t *Transport) onceSetNextProtoDefaults() {
// ...此处省略代码...
t2, err := http2configureTransport(t)
if err != nil {
log.Printf("Error enabling Transport HTTP/2 support: %v", err)
return
}
t.h2transport = t2
// ...此处省略代码...
}
func http2configureTransport(t1 *Transport) (*http2Transport, error) {
connPool := new(http2clientConnPool)
t2 := &http2Transport{
ConnPool: http2noDialClientConnPool{connPool},
t1: t1,
}
connPool.t = t2
if err := http2registerHTTPSProtocol(t1, http2noDialH2RoundTripper{t2}); err != nil {
return nil, err
}
if t1.TLSClientConfig == nil {
t1.TLSClientConfig = new(tls.Config)
}
if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "h2") {
t1.TLSClientConfig.NextProtos = append([]string{"h2"}, t1.TLSClientConfig.NextProtos...)
}
if !http2strSliceContains(t1.TLSClientConfig.NextProtos, "http/1.1") {
t1.TLSClientConfig.NextProtos = append(t1.TLSClientConfig.NextProtos, "http/1.1")
}
upgradeFn := func(authority string, c *tls.Conn) RoundTripper {
addr := http2authorityAddr("https", authority)
if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
go c.Close()
return http2erringRoundTripper{err}
} else if !used {
// Turns out we don't need this c.
// For example, two goroutines made requests to the same host
// at the same time, both kicking off TCP dials. (since protocol
// was unknown)
go c.Close()
}
return t2
}
if m := t1.TLSNextProto; len(m) == 0 {
t1.TLSNextProto = map[string]func(string, *tls.Conn) RoundTripper{
"h2": upgradeFn,
}
} else {
m["h2"] = upgradeFn
}
return t2, nil
}
笔者将上述的源码简略拆解为以下几个步骤:
http2clientConnPoolTLSClientConfigh2http1.1TLSClientConfig.NextProtosh2upgradeFnt1.TLSNextProto
(*Transport).dialConn
func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) {
// ...此处省略代码...
if cm.scheme() == "https" && t.hasCustomTLSDialer() {
// ...此处省略代码...
} else {
conn, err := t.dial(ctx, "tcp", cm.addr())
if err != nil {
return nil, wrapErr(err)
}
pconn.conn = conn
if cm.scheme() == "https" {
var firstTLSHost string
if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil {
return nil, wrapErr(err)
}
if err = pconn.addTLS(firstTLSHost, trace); err != nil {
return nil, wrapErr(err)
}
}
}
// Proxy setup.
// ...此处省略代码...
if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" {
if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok {
return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: next(cm.targetAddr, pconn.conn.(*tls.Conn))}, nil
}
}
// ...此处省略代码...
}
笔者对上述的源码形容如下:
t.dial(ctx, "tcp", cm.addr())NegotiatedProtocolt.TLSNextProto
s.NegotiatedProtocolh2s.NegotiatedProtocolIsMutualtrue
http2configureTransportTLSNextProtoh2nextupgradeFn
upgradeFnconnPool.addConnIfNeededt2http2Transport
func (p *http2clientConnPool) addConnIfNeeded(key string, t *http2Transport, c *tls.Conn) (used bool, err error) {
p.mu.Lock()
// ...此处省略代码...
// 次要用于判断是否有必要像连接池增加新的连贯
// 判断连接池中是否已有同host连贯,如果有且该链接可能解决新的申请则间接返回
call, dup := p.addConnCalls[key]
if !dup {
// ...此处省略代码...
call = &http2addConnCall{
p: p,
done: make(chan struct{}),
}
p.addConnCalls[key] = call
go call.run(t, key, c)
}
p.mu.Unlock()
<-call.done
if call.err != nil {
return false, call.err
}
return !dup, nil
}
func (c *http2addConnCall) run(t *http2Transport, key string, tc *tls.Conn) {
cc, err := t.NewClientConn(tc)
p := c.p
p.mu.Lock()
if err != nil {
c.err = err
} else {
p.addConnLocked(key, cc)
}
delete(p.addConnCalls, key)
p.mu.Unlock()
close(c.done)
}
剖析上述的源码咱们可能失去两点论断:
upgradeFnt.NewClientConn(tc)http2clientConnPool
最初咱们回到(*Transport).roundTrip办法并剖析其中的要害源码:
func (t *Transport) roundTrip(req *Request) (*Response, error) {
t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
// ...此处省略代码...
for {
select {
case <-ctx.Done():
req.closeBody()
return nil, ctx.Err()
default:
}
// ...此处省略代码...
pconn, err := t.getConn(treq, cm)
if err != nil {
t.setReqCanceler(req, nil)
req.closeBody()
return nil, err
}
var resp *Response
if pconn.alt != nil {
// HTTP/2 path.
t.setReqCanceler(req, nil) // not cancelable with CancelRequest
resp, err = pconn.alt.RoundTrip(req)
} else {
resp, err = pconn.roundTrip(treq)
}
if err == nil {
return resp, nil
}
// ...此处省略代码...
}
}
pconn.altpconn.alt.RoundTrip(req)http2Transport
(*http2Transport).NewClientConn
t.newClientConn(c, t.disableKeepAlives())
因为本节内容较多,所以笔者不再一次性贴出源码,而是按关键步骤剖析并分块儿贴出源码。
http2ClientConn
cc := &http2ClientConn{
t: t,
tconn: c,
readerDone: make(chan struct{}),
nextStreamID: 1,
maxFrameSize: 16 << 10, // spec default
initialWindowSize: 65535, // spec default
maxConcurrentStreams: 1000, // "infinite", per spec. 1000 seems good enough.
peerMaxHeaderListSize: 0xffffffffffffffff, // "infinite", per spec. Use 2^64-1 instead.
streams: make(map[uint32]*http2clientStream),
singleUse: singleUse,
wantSettingsAck: true,
pings: make(map[[8]byte]chan struct{}),
}
下面的源码新建了一个默认的http2ClientConn。
initialWindowSize:初始化窗口大小为65535,这个值之后会初始化每一个数据流可发送的数据窗口大小。
maxConcurrentStreams:示意每个连贯上容许最多有多少个数据流同时传输数据。
streams:以后连贯上的数据流。
t.disableKeepAlives()
2、创立一个条件锁并且新建Writer&Reader。
cc.cond = sync.NewCond(&cc.mu)
cc.flow.add(int32(http2initialWindowSize))
cc.bw = bufio.NewWriter(http2stickyErrWriter{c, &cc.werr})
cc.br = bufio.NewReader(c)
cc.flow.add(int32(http2initialWindowSize))
cc.flow.addhttp2initialWindowSize
3、新建一个读写数据帧的Framer。
cc.fr = http2NewFramer(cc.bw, cc.br)
cc.fr.ReadMetaHeaders = hpack.NewDecoder(http2initialHeaderTableSize, nil)
cc.fr.MaxHeaderListSize = t.maxHeaderListSize()
4、向server发送开场白,并发送一些初始化数据帧。
initialSettings := []http2Setting{
{ID: http2SettingEnablePush, Val: 0},
{ID: http2SettingInitialWindowSize, Val: http2transportDefaultStreamFlow},
}
if max := t.maxHeaderListSize(); max != 0 {
initialSettings = append(initialSettings, http2Setting{ID: http2SettingMaxHeaderListSize, Val: max})
}
cc.bw.Write(http2clientPreface)
cc.fr.WriteSettings(initialSettings...)
cc.fr.WriteWindowUpdate(0, http2transportDefaultConnFlow)
cc.inflow.add(http2transportDefaultConnFlow + http2initialWindowSize)
cc.bw.Flush()
client向server发送的开场白内容如下:
const (
// client首先想server发送以PRI结尾的一串字符串。
http2ClientPreface = "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
)
var (
http2clientPreface = []byte(http2ClientPreface)
)
SETTINGS
http2SettingEnablePush: 告知server客户端是否开启push性能。
http2transportDefaultStreamFlow
http2transportDefaultConnFlow
http2transportDefaultConnFlow + http2initialWindowSize
5、开启读循环并返回
go cc.readLoop()
(*http2Transport).RoundTrip
(*http2Transport).RoundTrip只是一个入口函数,它会调用(*http2Transport). RoundTripOpt办法。
(*http2Transport). RoundTripOpt有两个步骤比拟要害:
t.connPool().GetClientConn(req, addr)http2noDialClientConnPoolhttp2configureTransport
cc.roundTrip(req)
(http2noDialClientConnPool).GetClientConn
(*http2clientConnPool).getClientConn(req *Request, addr string, dialOnMiss bool)
false
在(*http2clientConnPool).getClientConn中会遍历同地址的连贯,并判断连贯的状态从而获取一个能够解决申请的连贯。
for _, cc := range p.conns[addr] {
if st := cc.idleState(); st.canTakeNewRequest {
if p.shouldTraceGetConn(st) {
http2traceGetConn(req, addr)
}
p.mu.Unlock()
return cc, nil
}
}
cc.idleState()
1、以后连贯是否能被多个申请共享,如果仅单个申请应用且曾经有一个数据流,则以后连贯不能解决新的申请。
if cc.singleUse && cc.nextStreamID > 1 {
return
}
2、以下几点均为true时,才代表以后连贯可能解决新的申请:
maxConcurrentStreamscc.tooIdleLocked()
st.canTakeNewRequest = cc.goAway == nil && !cc.closed && !cc.closing && maxConcurrentOkay &&
int64(cc.nextStreamID)+2*int64(cc.pendingRequests) < math.MaxInt32 &&
!cc.tooIdleLocked()
(*http2ClientConn).roundTrip
(*http2ClientConn).roundTrip
1、在真正开始解决申请前,还要进行header查看,http2对http1.1的某些header是不反对的,笔者就不对这个逻辑进行剖析了,间接上源码:
func http2checkConnHeaders(req *Request) error {
if v := req.Header.Get("Upgrade"); v != "" {
return fmt.Errorf("http2: invalid Upgrade request header: %q", req.Header["Upgrade"])
}
if vv := req.Header["Transfer-Encoding"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && vv[0] != "chunked") {
return fmt.Errorf("http2: invalid Transfer-Encoding request header: %q", vv)
}
if vv := req.Header["Connection"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && !strings.EqualFold(vv[0], "close") && !strings.EqualFold(vv[0], "keep-alive")) {
return fmt.Errorf("http2: invalid Connection request header: %q", vv)
}
return nil
}
func http2commaSeparatedTrailers(req *Request) (string, error) {
keys := make([]string, 0, len(req.Trailer))
for k := range req.Trailer {
k = CanonicalHeaderKey(k)
switch k {
case "Transfer-Encoding", "Trailer", "Content-Length":
return "", &http2badStringError{"invalid Trailer key", k}
}
keys = append(keys, k)
}
if len(keys) > 0 {
sort.Strings(keys)
return strings.Join(keys, ","), nil
}
return "", nil
}
(*http2ClientConn).awaitOpenSlotForRequestmaxConcurrentStreams
2.1、double check以后连贯可用。
if cc.closed || !cc.canTakeNewRequestLocked() {
if waitingForConn != nil {
close(waitingForConn)
}
return http2errClientConnUnusable
}
maxConcurrentStreams
if int64(len(cc.streams))+1 <= int64(cc.maxConcurrentStreams) {
if waitingForConn != nil {
close(waitingForConn)
}
return nil
}
2.3、如果以后连贯解决的数据流的确曾经达到下限,则开始进入期待流程。
if waitingForConn == nil {
waitingForConn = make(chan struct{})
go func() {
if err := http2awaitRequestCancel(req, waitingForConn); err != nil {
cc.mu.Lock()
waitingForConnErr = err
cc.cond.Broadcast()
cc.mu.Unlock()
}
}()
}
cc.pendingRequests++
cc.cond.Wait()
cc.pendingRequests--
通过下面的逻辑晓得,以后连贯解决的数据流达到下限后有两种状况,一是期待申请被勾销,二是期待其余申请完结。如果有其余数据流完结并唤醒以后期待的申请,则反复2.1、2.2和2.3的步骤。
cc.newStream()awaitOpenSlotForRequest
func (cc *http2ClientConn) newStream() *http2clientStream {
cs := &http2clientStream{
cc: cc,
ID: cc.nextStreamID,
resc: make(chan http2resAndError, 1),
peerReset: make(chan struct{}),
done: make(chan struct{}),
}
cs.flow.add(int32(cc.initialWindowSize))
cs.flow.setConnFlow(&cc.flow)
cs.inflow.add(http2transportDefaultStreamFlow)
cs.inflow.setConnFlow(&cc.inflow)
cc.nextStreamID += 2
cc.streams[cs.ID] = cs
return cs
}
笔者对上述代码简略形容如下:
http2clientStreamcc.nextStreamIDcc.nextStreamID +=2http2resAndErrorcc.initialWindowSizehttp2transportDefaultStreamFlow
cc.t.getBodyWriterState(cs, body)http2bodyWriterState
func (t *http2Transport) getBodyWriterState(cs *http2clientStream, body io.Reader) (s http2bodyWriterState) {
s.cs = cs
if body == nil {
return
}
resc := make(chan error, 1)
s.resc = resc
s.fn = func() {
cs.cc.mu.Lock()
cs.startedWrite = true
cs.cc.mu.Unlock()
resc <- cs.writeRequestBody(body, cs.req.Body)
}
s.delay = t.expectContinueTimeout()
if s.delay == 0 ||
!httpguts.HeaderValuesContainsToken(
cs.req.Header["Expect"],
"100-continue") {
return
}
// 此处省略代码,因为绝大部分申请都不会设置100-continue的标头
return
}
s.fns.rescwriteRequestBody
5、因为是多个申请共享一个连贯,那么向连贯写入数据帧时须要加锁,比方加锁写入申请头。
cc.wmu.Lock()
endStream := !hasBody && !hasTrailers
werr := cc.writeHeaders(cs.ID, endStream, int(cc.maxFrameSize), hdrs)
cc.wmu.Unlock()
6、如果有申请body,则开始写入申请body,没有申请body则设置响应header的超时工夫(有申请body时,响应header的超时工夫须要在申请body写完之后设置)。
if hasBody {
bodyWriter.scheduleBodyWrite()
} else {
http2traceWroteRequest(cs.trace, nil)
if d := cc.responseHeaderTimeout(); d != 0 {
timer := time.NewTimer(d)
defer timer.Stop()
respHeaderTimer = timer.C
}
}
scheduleBodyWrite
func (s http2bodyWriterState) scheduleBodyWrite() {
if s.timer == nil {
// We're not doing a delayed write (see
// getBodyWriterState), so just start the writing
// goroutine immediately.
go s.fn()
return
}
http2traceWait100Continue(s.cs.trace)
if s.timer.Stop() {
s.timer.Reset(s.delay)
}
}
100-continuegetBodyWriterStatescheduleBodyWrite
7、轮询管道获取响应后果。
在看轮询源码之前,先看一个简略的函数:
handleReadLoopResponse := func(re http2resAndError) (*Response, bool, error) {
res := re.res
if re.err != nil || res.StatusCode > 299 {
bodyWriter.cancel()
cs.abortRequestBodyWrite(http2errStopReqBodyWrite)
}
if re.err != nil {
cc.forgetStreamID(cs.ID)
return nil, cs.getStartedWrite(), re.err
}
res.Request = req
res.TLS = cc.tlsState
return res, false, nil
}
(*http2ClientConn).roundTrip
handleReadLoopResponse
for {
select {
case re := <-readLoopResCh:
return handleReadLoopResponse(re)
// 此处省略代码(蕴含申请勾销,申请超时等管道的轮询)
case err := <-bodyWriter.resc:
// Prefer the read loop's response, if available. Issue 16102.
select {
case re := <-readLoopResCh:
return handleReadLoopResponse(re)
default:
}
if err != nil {
cc.forgetStreamID(cs.ID)
return nil, cs.getStartedWrite(), err
}
bodyWritten = true
if d := cc.responseHeaderTimeout(); d != 0 {
timer := time.NewTimer(d)
defer timer.Stop()
respHeaderTimer = timer.C
}
}
}
笔者仅对下面的第二种状况即申请body发送实现进行形容:
- 是否读到响应,如果可能读取响应则间接返回。
- 判断申请body是否发送胜利,如果发送失败,间接返回。
- 如果申请body发送胜利,则设置响应header的超时工夫。
总结
本文次要形容了两个方面的内容:
- 确认client和server都反对http2协定,并构建一个http2的连贯,同时开启该连贯的读循环。
- 通过http2连接池获取一个http2连贯,并发送申请和读取响应。
预报
鉴于HTTTP2.0的内容较多,且文章篇幅过长时不易浏览,笔者将后续要剖析的内容拆为两个局部:
readLoopResCh
最初,衷心希望本文可能对各位读者有肯定的帮忙。
注:
- 写本文时, 笔者所用go版本为: go1.14.2。
- 本文对h2c的状况不予以考虑。
- 因为笔者剖析的是申请流程,所以没有在本地搭建server,而是应用了一个反对http2连贯的图片一步步的debug。eg: https://dss0.bdstatic.com/5aV…
参考
https://developers.google.com…