我正在尝试从图像中提取血管,为此,我首先对图像进行均衡处理,并应用Clahe柱状图获得以下结果:
clahe = cv2.createCLAHE(clipLimit=100.0, tileGridSize=(100,100))
self.cl1 = clahe.apply(self.result_array)
self.cl1 = 255 - self.cl1

然后我用大松阈值提取血管,但没能做好:
self.ret, self.thresh = cv2.threshold(self.cl1, 0,255,cv2.THRESH_BINARY + cv2.THRESH_OTSU)
kernel = np.ones((1,1),np.float32)/1
self.thresh = cv2.erode(self.thresh, kernel, iterations=3)
self.thresh = cv2.dilate(self.thresh, kernel, iterations=3)
结果如下:

显然有很多噪音。我试过使用中值模糊,但它只是把噪音聚集起来,在某些地方变成一个斑点。我该如何去除噪音来获取血管呢?
这是我试图从中提取血管的原始图像:

最佳答案:
[hi,low]
kernel3 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
kernel5 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
kernel7 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7))
t_lo = 136
t_hi = 224
blured = cv2.pyrMeanShiftFiltering(img, 3, 9)
#blured = cv2.bilateralFilter(img, 9, 32, 72)
clahe = cv2.createCLAHE(clipLimit=128.0, tileGridSize=(64, 64))
cl1 = clahe.apply(blured)
cl1 = 255 - cl1
ret, thresh_hi = cv2.threshold(cl1, t_hi, 255, cv2.THRESH_TOZERO)
ret, thresh_lo = cv2.threshold(cl1, t_lo, 255, cv2.THRESH_TOZERO)

低阈值图像

高阈值图像
准备和清理:
current = np.copy(thresh_hi)
prev = np.copy(current)
prev[:] = 0
current = cv2.morphologyEx(current, cv2.MORPH_OPEN, kernel5)
iter_num = 0
max_iter = 1000
不是最有效的方法…但易于实施:
while np.sum(current - prev) > 0 and iter_num < max_iter:
iter_num = iter_num+1
prev = np.copy(current)
current = cv2.dilate(current, kernel3)
current[np.where(thresh_lo == 0)] = 0

初始遮罩
去除小斑点:
contours, hierarchy = cv2.findContours(current, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
area = cv2.contourArea(contour)
if area < 256:
cv2.drawContours( current, [contour], 0, [0,0,0], -1 )

去除小斑点后
形态清理:
opening = cv2.morphologyEx(current, cv2.MORPH_OPEN, kernel7)
cl1[np.where(opening == 0)] = 0

结果
这绝不是最佳的,但我认为它应该为您提供足够的工具来开始。