简单的并发控制

 

利用 channel 的缓冲设定,我们就可以来实现并发的限制。我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要)。让并发的 goroutine在执行完成后把这个 channel 里的东西给读走。这样整个并发的数量就讲控制在这个 channel的缓冲区大小上。

比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器。

chLimit := make(chan bool, 1)

然后在并发执行的地方,每创建一个新的 goroutine,都往 chLimit 里塞个东西。

for i, sleeptime := range input {    chs[i] = make(chan string, 1)    chLimit <- true    go limitFunc(chLimit, chs[i], i, sleeptime, timeout)}

这里通过 go 关键字并发执行的是新构造的函数。他在执行完后,会把 chLimit的缓冲区里给消费掉一个。

limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {    Run(task_id, sleeptime, timeout, ch)    <-chLimit}

这样一来,当创建的 goroutine 数量到达 chLimit 的缓冲区上限后。主 goroutine 就挂起阻塞了,直到这些 goroutine 执行完毕,消费掉了 chLimit 缓冲区中的数据,程序才会继续创建新的 goroutine 。我们并发数量限制的目的也就达到了。

以下是完整代码:

package main import (    "fmt"    "time") func Run(task_id, sleeptime, timeout int, ch chan string) {    ch_run := make(chan string)    go run(task_id, sleeptime, ch_run)    select {    case re := <-ch_run:        ch <- re    case <-time.After(time.Duration(timeout) * time.Second):        re := fmt.Sprintf("task id %d , timeout", task_id)        ch <- re    }} func run(task_id, sleeptime int, ch chan string) {     time.Sleep(time.Duration(sleeptime) * time.Second)    ch <- fmt.Sprintf("task id %d , sleep %d second", task_id, sleeptime)    return} func main() {    input := []int{3, 2, 1}    timeout := 2    chLimit := make(chan bool, 1)    chs := make([]chan string, len(input))    limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {        Run(task_id, sleeptime, timeout, ch)        <-chLimit    }    startTime := time.Now()    fmt.Println("Multirun start")    for i, sleeptime := range input {        chs[i] = make(chan string, 1)        chLimit <- true        go limitFunc(chLimit, chs[i], i, sleeptime, timeout)    }     for _, ch := range chs {        fmt.Println(<-ch)    }    endTime := time.Now()    fmt.Printf("Multissh finished. Process time %s. Number of task is %d", endTime.Sub(startTime), len(input))}

运行结果:

Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 5s. Number of task is 3

如果修改并发限制为2:

chLimit := make(chan bool, 2)

运行结果:

Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 3s. Number of task is 3

使用计数器实现请求限流

 

限流的要求是在指定的时间间隔内,server 最多只能服务指定数量的请求。实现的原理是我们启动一个计数器,每次服务请求会把计数器加一,同时到达指定的时间间隔后会把计数器清零;这个计数器的实现代码如下所示:

type RequestLimitService struct { Interval time.Duration MaxCount int Lock     sync.Mutex ReqCount int} func NewRequestLimitService(interval time.Duration, maxCnt int) *RequestLimitService { reqLimit := &RequestLimitService{  Interval: interval,  MaxCount: maxCnt, }  go func() {  ticker := time.NewTicker(interval)  for {   <-ticker.C   reqLimit.Lock.Lock()   fmt.Println("Reset Count...")   reqLimit.ReqCount = 0   reqLimit.Lock.Unlock()  } }()  return reqLimit} func (reqLimit *RequestLimitService) Increase() { reqLimit.Lock.Lock() defer reqLimit.Lock.Unlock()  reqLimit.ReqCount += 1} func (reqLimit *RequestLimitService) IsAvailable() bool { reqLimit.Lock.Lock() defer reqLimit.Lock.Unlock()  return reqLimit.ReqCount < reqLimit.MaxCount}

在服务请求的时候, 我们会对当前计数器和阈值进行比较,只有未超过阈值时才进行服务:

var RequestLimit = NewRequestLimitService(10 * time.Second, 5) func helloHandler(w http.ResponseWriter, r *http.Request) { if RequestLimit.IsAvailable() {  RequestLimit.Increase()  fmt.Println(RequestLimit.ReqCount)  io.WriteString(w, "Hello world!\n") } else {  fmt.Println("Reach request limiting!")  io.WriteString(w, "Reach request limit!\n") }} func main() { fmt.Println("Server Started!") http.HandleFunc("/", helloHandler) http.ListenAndServe(":8000", nil)}

使用golang官方包实现httpserver频率限制

 

使用golang来编写httpserver时,可以使用官方已经有实现好的包:

import(    "fmt"    "net"    "golang.org/x/net/netutil") func main() {    l, err := net.Listen("tcp", "127.0.0.1:0")    if err != nil {        fmt.Fatalf("Listen: %v", err)    }    defer l.Close()    l = LimitListener(l, max)        http.Serve(l, http.HandlerFunc())        //bla bla bla.................}

源码如下(url : https://github.com/golang/net/blob/master/netutil/listen.go),基本思路就是为连接数计数,通过make chan来建立一个最大连接数的channel, 每次accept就+1,close时候就-1. 当到达最大连接数时,就等待空闲连接出来之后再accept。

// Copyright 2013 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file. // Package netutil provides network utility functions, complementing the more// common ones in the net package.package netutil // import "golang.org/x/net/netutil" import (    "net" "sync") // LimitListener returns a Listener that accepts at most n simultaneous// connections from the provided Listener.func LimitListener(l net.Listener, n int) net.Listener { return &limitListener{  Listener: l,  sem:      make(chan struct{}, n),  done:     make(chan struct{}), }} type limitListener struct { net.Listener sem       chan struct{} closeOnce sync.Once     // ensures the done chan is only closed once done      chan struct{} // no values sent; closed when Close is called} // acquire acquires the limiting semaphore. Returns true if successfully// accquired, false if the listener is closed and the semaphore is not// acquired.func (l *limitListener) acquire() bool { select { case <-l.done:  return false case l.sem <- struct{}{}:  return true }}func (l *limitListener) release() { <-l.sem } func (l *limitListener) Accept() (net.Conn, error) {    //如果sem满了,就会阻塞在这 acquired := l.acquire() // If the semaphore isn't acquired because the listener was closed, expect // that this call to accept won't block, but immediately return an error. c, err := l.Listener.Accept() if err != nil {  if acquired {   l.release()  }  return nil, err } return &limitListenerConn{Conn: c, release: l.release}, nil} func (l *limitListener) Close() error { err := l.Listener.Close() l.closeOnce.Do(func() { close(l.done) }) return err} type limitListenerConn struct { net.Conn releaseOnce sync.Once release     func()} func (l *limitListenerConn) Close() error { err := l.Conn.Close()    //close时释放占用的sem l.releaseOnce.Do(l.release) return err}

使用Token Bucket(令牌桶算法)实现请求限流

 

在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流!为了保证在业务高峰期,线上系统也能保证一定的弹性和稳定性,最有效的方案就是进行服务降级了,而限流就是降级系统最常采用的方案之一。

这里为大家推荐一个开源库https://github.com/didip/tollbooth,但是,如果您想要一些简单的、轻量级的或者只是想要学习的东西,实现自己的中间件来处理速率限制并不困难。今天我们就来聊聊如何实现自己的一个限流中间件

首先我们需要安装一个提供了 Token bucket (令牌桶算法)的依赖包,上面提到的toolbooth 的实现也是基于它实现的:

$ go get golang.org/x/time/rate

先看Demo代码的实现:

package main import (    "net/http"    "golang.org/x/time/rate") var limiter = rate.NewLimiter(2, 5)func limit(next http.Handler) http.Handler {    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {        if limiter.Allow() == false {            http.Error(w, http.StatusText(429), http.StatusTooManyRequests)            return        }        next.ServeHTTP(w, r)    })} func main() {    mux := http.NewServeMux()    mux.HandleFunc("/", okHandler)    // Wrap the servemux with the limit middleware.    http.ListenAndServe(":4000", limit(mux))} func okHandler(w http.ResponseWriter, r *http.Request) {    w.Write([]byte("OK"))}

然后看看 rate.NewLimiter的源码:

算法描述:用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中(每秒会有r个令牌放入桶中),桶中最多可以存放b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;

// Copyright 2015 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.// Package rate provides a rate limiter.package rate import ( "fmt" "math" "sync" "time"  "golang.org/x/net/context") // Limit defines the maximum frequency of some events.// Limit is represented as number of events per second.// A zero Limit allows no events.type Limit float64 // Inf is the infinite rate limit; it allows all events (even if burst is zero).const Inf = Limit(math.MaxFloat64) // Every converts a minimum time interval between events to a Limit.func Every(interval time.Duration) Limit { if interval <= 0 {  return Inf } return 1 / Limit(interval.Seconds())} // A Limiter controls how frequently events are allowed to happen.// It implements a "token bucket" of size b, initially full and refilled// at rate r tokens per second.// Informally, in any large enough time interval, the Limiter limits the// rate to r tokens per second, with a maximum burst size of b events.// As a special case, if r == Inf (the infinite rate), b is ignored.// See https://en.wikipedia.org/wiki/Token_bucket for more about token buckets.//// The zero value is a valid Limiter, but it will reject all events.// Use NewLimiter to create non-zero Limiters.//// Limiter has three main methods, Allow, Reserve, and Wait.// Most callers should use Wait.//// Each of the three methods consumes a single token.// They differ in their behavior when no token is available.// If no token is available, Allow returns false.// If no token is available, Reserve returns a reservation for a future token// and the amount of time the caller must wait before using it.// If no token is available, Wait blocks until one can be obtained// or its associated context.Context is canceled.//// The methods AllowN, ReserveN, and WaitN consume n tokens.type Limiter struct { //maximum token, token num per second limit Limit //burst field, max token num burst int mu    sync.Mutex //tokens num, change tokens float64 // last is the last time the limiter's tokens field was updated last time.Time // lastEvent is the latest time of a rate-limited event (past or future) lastEvent time.Time} // Limit returns the maximum overall event rate.func (lim *Limiter) Limit() Limit { lim.mu.Lock() defer lim.mu.Unlock() return lim.limit} // Burst returns the maximum burst size. Burst is the maximum number of tokens// that can be consumed in a single call to Allow, Reserve, or Wait, so higher// Burst values allow more events to happen at once.// A zero Burst allows no events, unless limit == Inf.func (lim *Limiter) Burst() int { return lim.burst} // NewLimiter returns a new Limiter that allows events up to rate r and permits// bursts of at most b tokens.func NewLimiter(r Limit, b int) *Limiter { return &Limiter{  limit: r,  burst: b, }} // Allow is shorthand for AllowN(time.Now(), 1).func (lim *Limiter) Allow() bool { return lim.AllowN(time.Now(), 1)} // AllowN reports whether n events may happen at time now.// Use this method if you intend to drop / skip events that exceed the rate limit.// Otherwise use Reserve or Wait.func (lim *Limiter) AllowN(now time.Time, n int) bool { return lim.reserveN(now, n, 0).ok} // A Reservation holds information about events that are permitted by a Limiter to happen after a delay.// A Reservation may be canceled, which may enable the Limiter to permit additional events.type Reservation struct { ok     bool lim    *Limiter tokens int //This is the time to action timeToAct time.Time // This is the Limit at reservation time, it can change later. limit Limit} // OK returns whether the limiter can provide the requested number of tokens// within the maximum wait time.  If OK is false, Delay returns InfDuration, and// Cancel does nothing.func (r *Reservation) OK() bool { return r.ok} // Delay is shorthand for DelayFrom(time.Now()).func (r *Reservation) Delay() time.Duration { return r.DelayFrom(time.Now())} // InfDuration is the duration returned by Delay when a Reservation is not OK.const InfDuration = time.Duration(1<<63 - 1) // DelayFrom returns the duration for which the reservation holder must wait// before taking the reserved action.  Zero duration means act immediately.// InfDuration means the limiter cannot grant the tokens requested in this// Reservation within the maximum wait time.func (r *Reservation) DelayFrom(now time.Time) time.Duration { if !r.ok {  return InfDuration } delay := r.timeToAct.Sub(now) if delay < 0 {  return 0 } return delay} // Cancel is shorthand for CancelAt(time.Now()).func (r *Reservation) Cancel() { r.CancelAt(time.Now()) return} // CancelAt indicates that the reservation holder will not perform the reserved action// and reverses the effects of this Reservation on the rate limit as much as possible,// considering that other reservations may have already been made.func (r *Reservation) CancelAt(now time.Time) { if !r.ok {  return } r.lim.mu.Lock() defer r.lim.mu.Unlock() if r.lim.limit == Inf || r.tokens == 0 || r.timeToAct.Before(now) {  return } // calculate tokens to restore // The duration between lim.lastEvent and r.timeToAct tells us how many tokens were reserved // after r was obtained. These tokens should not be restored. restoreTokens := float64(r.tokens) - r.limit.tokensFromDuration(r.lim.lastEvent.Sub(r.timeToAct)) if restoreTokens <= 0 {  return } // advance time to now now, _, tokens := r.lim.advance(now) // calculate new number of tokens tokens += restoreTokens if burst := float64(r.lim.burst); tokens > burst {  tokens = burst } // update state r.lim.last = now r.lim.tokens = tokens if r.timeToAct == r.lim.lastEvent {  prevEvent := r.timeToAct.Add(r.limit.durationFromTokens(float64(-r.tokens)))  if !prevEvent.Before(now) {   r.lim.lastEvent = prevEvent  } } return} // Reserve is shorthand for ReserveN(time.Now(), 1).func (lim *Limiter) Reserve() *Reservation { return lim.ReserveN(time.Now(), 1)} // ReserveN returns a Reservation that indicates how long the caller must wait before n events happen.// The Limiter takes this Reservation into account when allowing future events.// ReserveN returns false if n exceeds the Limiter's burst size.// Usage example://   r, ok := lim.ReserveN(time.Now(), 1)//   if !ok {//     // Not allowed to act! Did you remember to set lim.burst to be > 0 ?//   }//   time.Sleep(r.Delay())//   Act()// Use this method if you wish to wait and slow down in accordance with the rate limit without dropping events.// If you need to respect a deadline or cancel the delay, use Wait instead.// To drop or skip events exceeding rate limit, use Allow instead.func (lim *Limiter) ReserveN(now time.Time, n int) *Reservation { r := lim.reserveN(now, n, InfDuration) return &r} // Wait is shorthand for WaitN(ctx, 1).func (lim *Limiter) Wait(ctx context.Context) (err error) { return lim.WaitN(ctx, 1)} // WaitN blocks until lim permits n events to happen.// It returns an error if n exceeds the Limiter's burst size, the Context is// canceled, or the expected wait time exceeds the Context's Deadline.func (lim *Limiter) WaitN(ctx context.Context, n int) (err error) { if n > lim.burst {  return fmt.Errorf("rate: Wait(n=%d) exceeds limiter's burst %d", n, lim.burst) } // Check if ctx is already cancelled select { case <-ctx.Done():  return ctx.Err() default: } // Determine wait limit now := time.Now() waitLimit := InfDuration if deadline, ok := ctx.Deadline(); ok {  waitLimit = deadline.Sub(now) } // Reserve r := lim.reserveN(now, n, waitLimit) if !r.ok {  return fmt.Errorf("rate: Wait(n=%d) would exceed context deadline", n) } // Wait t := time.NewTimer(r.DelayFrom(now)) defer t.Stop() select { case <-t.C:  // We can proceed.  return nil case <-ctx.Done():  // Context was canceled before we could proceed.  Cancel the  // reservation, which may permit other events to proceed sooner.  r.Cancel()  return ctx.Err() }} // SetLimit is shorthand for SetLimitAt(time.Now(), newLimit).func (lim *Limiter) SetLimit(newLimit Limit) { lim.SetLimitAt(time.Now(), newLimit)} // SetLimitAt sets a new Limit for the limiter. The new Limit, and Burst, may be violated// or underutilized by those which reserved (using Reserve or Wait) but did not yet act// before SetLimitAt was called.func (lim *Limiter) SetLimitAt(now time.Time, newLimit Limit) { lim.mu.Lock() defer lim.mu.Unlock() now, _, tokens := lim.advance(now) lim.last = now lim.tokens = tokens lim.limit = newLimit} // reserveN is a helper method for AllowN, ReserveN, and WaitN.// maxFutureReserve specifies the maximum reservation wait duration allowed.// reserveN returns Reservation, not *Reservation, to avoid allocation in AllowN and WaitN.func (lim *Limiter) reserveN(now time.Time, n int, maxFutureReserve time.Duration) Reservation { lim.mu.Lock() defer lim.mu.Unlock() if lim.limit == Inf {  return Reservation{   ok:        true,   lim:       lim,   tokens:    n,   timeToAct: now,  } } now, last, tokens := lim.advance(now) // Calculate the remaining number of tokens resulting from the request. tokens -= float64(n) // Calculate the wait duration var waitDuration time.Duration if tokens < 0 {  waitDuration = lim.limit.durationFromTokens(-tokens) } // Decide result ok := n <= lim.burst && waitDuration <= maxFutureReserve // Prepare reservation r := Reservation{  ok:    ok,  lim:   lim,  limit: lim.limit, } if ok {  r.tokens = n  r.timeToAct = now.Add(waitDuration) } // Update state if ok {  lim.last = now  lim.tokens = tokens  lim.lastEvent = r.timeToAct } else {  lim.last = last } return r} // advance calculates and returns an updated state for lim resulting from the passage of time.// lim is not changed.func (lim *Limiter) advance(now time.Time) (newNow time.Time, newLast time.Time, newTokens float64) { last := lim.last if now.Before(last) {  last = now } // Avoid making delta overflow below when last is very old. maxElapsed := lim.limit.durationFromTokens(float64(lim.burst) - lim.tokens) elapsed := now.Sub(last) if elapsed > maxElapsed {  elapsed = maxElapsed } // Calculate the new number of tokens, due to time that passed. delta := lim.limit.tokensFromDuration(elapsed) tokens := lim.tokens + delta if burst := float64(lim.burst); tokens > burst {  tokens = burst } return now, last, tokens} // durationFromTokens is a unit conversion function from the number of tokens to the duration// of time it takes to accumulate them at a rate of limit tokens per second.func (limit Limit) durationFromTokens(tokens float64) time.Duration { seconds := tokens / float64(limit) return time.Nanosecond * time.Duration(1e9*seconds)} // tokensFromDuration is a unit conversion function from a time duration to the number of tokens// which could be accumulated during that duration at a rate of limit tokens per second.func (limit Limit) tokensFromDuration(d time.Duration) float64 { return d.Seconds() * float64(limit)}

虽然在某些情况下使用单个全局速率限制器非常有用,但另一种常见情况是基于IP地址或API密钥等标识符为每个用户实施速率限制器。我们将使用IP地址作为标识符。简单实现代码如下:

package mainimport (    "net/http"    "sync"    "time"    "golang.org/x/time/rate")// Create a custom visitor struct which holds the rate limiter for each// visitor and the last time that the visitor was seen.type visitor struct {    limiter  *rate.Limiter    lastSeen time.Time}// Change the the map to hold values of the type visitor.var visitors = make(map[string]*visitor)var mtx sync.Mutex// Run a background goroutine to remove old entries from the visitors map.func init() {    go cleanupVisitors()}func addVisitor(ip string) *rate.Limiter {    limiter := rate.NewLimiter(2, 5)    mtx.Lock()    // Include the current time when creating a new visitor.    visitors[ip] = &visitor{limiter, time.Now()}    mtx.Unlock()    return limiter}func getVisitor(ip string) *rate.Limiter {    mtx.Lock()    v, exists := visitors[ip]    if !exists {        mtx.Unlock()        return addVisitor(ip)    }    // Update the last seen time for the visitor.    v.lastSeen = time.Now()    mtx.Unlock()    return v.limiter}// Every minute check the map for visitors that haven't been seen for// more than 3 minutes and delete the entries.func cleanupVisitors() {    for {        time.Sleep(time.Minute)        mtx.Lock()        for ip, v := range visitors {            if time.Now().Sub(v.lastSeen) > 3*time.Minute {                delete(visitors, ip)            }        }        mtx.Unlock()    }}func limit(next http.Handler) http.Handler {    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {        limiter := getVisitor(r.RemoteAddr)        if limiter.Allow() == false {            http.Error(w, http.StatusText(429), http.StatusTooManyRequests)            return        }        next.ServeHTTP(w, r)    })}

原文链接:https://blog.csdn.net/micl200110041/article/details/82013032