引子

因为数组的长度是固定的并且数组长度属于类型的一部分,所以数组有很多的局限性。 例如:

func arraySum(x [3]int) int{
    sum := 0
    for _, v := range x{
        sum = sum + v
    }
    return sum
}
[3]int
a := [3]int{1, 2, 3}

数组a中已经有三个元素了,我们不能再继续往数组a中添加新元素了。

切片

切片(Slice)是一个拥有相同类型元素的可变长度的序列。它是基于数组类型做的一层封装。它非常灵活,支持自动扩容。

地址长度容量

切片的定义

声明切片类型的基本语法如下:

var name []T

其中,

  • name:表示变量名
  • T:表示切片中的元素类型

举个例子:

func main() {
	// 声明切片类型
	var a []string              //声明一个字符串切片
	var b = []int{}             //声明一个整型切片并初始化
	var c = []bool{false, true} //声明一个布尔切片并初始化
	var d = []bool{false, true} //声明一个布尔切片并初始化
	fmt.Println(a)              //[]
	fmt.Println(b)              //[]
	fmt.Println(c)              //[false true]
	fmt.Println(a == nil)       //true
	fmt.Println(b == nil)       //false
	fmt.Println(c == nil)       //false
	// fmt.Println(c == d)   //切片是引用类型,不支持直接比较,只能和nil比较
}

切片的长度和容量

len()cap()

切片表达式

切片表达式从字符串、数组、指向数组或切片的指针构造子字符串或切片。它有两种变体:一种指定low和high两个索引界限值的简单的形式,另一种是除了low和high索引界限值外还指定容量的完整的形式。

简单切片表达式

lowhigh1<=索引值<4长度=high-low
func main() {
	a := [5]int{1, 2, 3, 4, 5}
	s := a[1:3]  // s := a[low:high]
	fmt.Printf("s:%v len(s):%v cap(s):%v\n", s, len(s), cap(s))
}

输出:

s:[2 3] len(s):2 cap(s):4
lowhigh
a[2:]  // 等同于 a[2:len(a)]
a[:3]  // 等同于 a[0:3]
a[:]   // 等同于 a[0:len(a)]

注意:

0 <= low <= high <= len(a)
highcap(a)lowhighlow <= highpanic
func main() {
	a := [5]int{1, 2, 3, 4, 5}
	s := a[1:3]  // s := a[low:high]
	fmt.Printf("s:%v len(s):%v cap(s):%v\n", s, len(s), cap(s))
	s2 := s[3:4]  // 索引的上限是cap(s)而不是len(s)
	fmt.Printf("s2:%v len(s2):%v cap(s2):%v\n", s2, len(s2), cap(s2))
}

输出:

s:[2 3] len(s):2 cap(s):4
s2:[5] len(s2):1 cap(s2):1

完整切片表达式

对于数组,指向数组的指针,或切片a(注意不能是字符串)支持完整切片表达式:

a[low : high : max]
a[low: high]max-low
func main() {
	a := [5]int{1, 2, 3, 4, 5}
	t := a[1:3:5]
	fmt.Printf("t:%v len(t):%v cap(t):%v\n", t, len(t), cap(t))
}

输出结果:

t:[2 3] len(t):2 cap(t):4
0 <= low <= high <= max <= cap(a)

使用make()函数构造切片

make()
make([]T, size, cap)

其中:

  • T:切片的元素类型
  • size:切片中元素的数量
  • cap:切片的容量

举个例子:

func main() {
	a := make([]int, 2, 10)
	fmt.Println(a)      //[0 0]
	fmt.Println(len(a)) //2
	fmt.Println(cap(a)) //10
}
alen(a)cap(a)

切片的本质

slice
slicesliceslice
a := [8]int{0, 1, 2, 3, 4, 5, 6, 7}s1 := a[:5]
s2 := a[3:6]

切片不能直接比较

==nilnilnilnil
var s1 []int         //len(s1)=0;cap(s1)=0;s1==nil
s2 := []int{}        //len(s2)=0;cap(s2)=0;s2!=nil
s3 := make([]int, 0) //len(s3)=0;cap(s3)=0;s3!=nil
len(s) == 0s == nil

切片的拷贝赋值

下面的代码中演示了拷贝前后两个变量共享底层数组,对一个切片的修改会影响另一个切片的内容,这点需要特别注意。

func main() {
	s1 := make([]int, 3) //[0 0 0]
	s2 := s1             //将s1直接赋值给s2,s1和s2共用一个底层数组
	s2[0] = 100
	fmt.Println(s1) //[100 0 0]
	fmt.Println(s2) //[100 0 0]
}

切片遍历

for range
func main() {
	s := []int{1, 3, 5}

	for i := 0; i < len(s); i++ {
		fmt.Println(i, s[i])
	}

	for index, value := range s {
		fmt.Println(index, value)
	}
}

append()方法为切片添加元素

append()
func main(){
	var s []int
	s = append(s, 1)        // [1]
	s = append(s, 2, 3, 4)  // [1 2 3 4]
	s2 := []int{5, 6, 7}  
	s = append(s, s2...)    // [1 2 3 4 5 6 7]
}
append()
var s []int
s = append(s, 1, 2, 3)
append()
s := []int{}  // 没有必要初始化
s = append(s, 1, 2, 3)

var s = make([]int)  // 没有必要初始化
s = append(s, 1, 2, 3)
append()

举个例子:

func main() {
	//append()添加元素和切片扩容
	var numSlice []int
	for i := 0; i < 10; i++ {
		numSlice = append(numSlice, i)
		fmt.Printf("%v  len:%d  cap:%d  ptr:%p\n", numSlice, len(numSlice), cap(numSlice), numSlice)
	}
}

输出:

[0]  len:1  cap:1  ptr:0xc0000a8000
[0 1]  len:2  cap:2  ptr:0xc0000a8040
[0 1 2]  len:3  cap:4  ptr:0xc0000b2020
[0 1 2 3]  len:4  cap:4  ptr:0xc0000b2020
[0 1 2 3 4]  len:5  cap:8  ptr:0xc0000b6000
[0 1 2 3 4 5]  len:6  cap:8  ptr:0xc0000b6000
[0 1 2 3 4 5 6]  len:7  cap:8  ptr:0xc0000b6000
[0 1 2 3 4 5 6 7]  len:8  cap:8  ptr:0xc0000b6000
[0 1 2 3 4 5 6 7 8]  len:9  cap:16  ptr:0xc0000b8000
[0 1 2 3 4 5 6 7 8 9]  len:10  cap:16  ptr:0xc0000b8000

从上面的结果可以看出:

append()

append()函数还支持一次性追加多个元素。 例如:

var citySlice []string
// 追加一个元素
citySlice = append(citySlice, "北京")
// 追加多个元素
citySlice = append(citySlice, "上海", "广州", "深圳")
// 追加切片
a := []string{"成都", "重庆"}
citySlice = append(citySlice, a...)
fmt.Println(citySlice) //[北京 上海 广州 深圳 成都 重庆]

切片的扩容策略

$GOROOT/src/runtime/slice.go
newcap := old.cap
doublecap := newcap + newcap
if cap > doublecap {
	newcap = cap
} else {
	if old.len < 1024 {
		newcap = doublecap
	} else {
		// Check 0 < newcap to detect overflow
		// and prevent an infinite loop.
		for 0 < newcap && newcap < cap {
			newcap += newcap / 4
		}
		// Set newcap to the requested cap when
		// the newcap calculation overflowed.
		if newcap <= 0 {
			newcap = cap
		}
	}
}

从上面的代码可以看出以下内容:

  • 首先判断,如果新申请容量(cap)大于2倍的旧容量(old.cap),最终容量(newcap)就是新申请的容量(cap)。
  • 否则判断,如果旧切片的长度小于1024,则最终容量(newcap)就是旧容量(old.cap)的两倍,即(newcap=doublecap),
  • 否则判断,如果旧切片长度大于等于1024,则最终容量(newcap)从旧容量(old.cap)开始循环增加原来的1/4,即(newcap=old.cap,for {newcap += newcap/4})直到最终容量(newcap)大于等于新申请的容量(cap),即(newcap >= cap)
  • 如果最终容量(cap)计算值溢出,则最终容量(cap)就是新申请容量(cap)。
intstring

使用copy()函数复制切片

首先我们来看一个问题:

func main() {
	a := []int{1, 2, 3, 4, 5}
	b := a
	fmt.Println(a) //[1 2 3 4 5]
	fmt.Println(b) //[1 2 3 4 5]
	b[0] = 1000
	fmt.Println(a) //[1000 2 3 4 5]
	fmt.Println(b) //[1000 2 3 4 5]
}

由于切片是引用类型,所以a和b其实都指向了同一块内存地址。修改b的同时a的值也会发生变化。

copy()copy()
copy(destSlice, srcSlice []T)

其中:

  • srcSlice: 数据来源切片
  • destSlice: 目标切片

举个例子:

func main() {
	// copy()复制切片
	a := []int{1, 2, 3, 4, 5}
	c := make([]int, 5, 5)
	copy(c, a)     //使用copy()函数将切片a中的元素复制到切片c
	fmt.Println(a) //[1 2 3 4 5]
	fmt.Println(c) //[1 2 3 4 5]
	c[0] = 1000
	fmt.Println(a) //[1 2 3 4 5]
	fmt.Println(c) //[1000 2 3 4 5]
}

从切片中删除元素

Go语言中并没有删除切片元素的专用方法,我们可以使用切片本身的特性来删除元素。 代码如下:

func main() {
	// 从切片中删除元素
	a := []int{30, 31, 32, 33, 34, 35, 36, 37}
	// 要删除索引为2的元素
	a = append(a[:2], a[3:]...)
	fmt.Println(a) //[30 31 33 34 35 36 37]
}
indexa = append(a[:index], a[index+1:]...)

练习题

1.请写出下面代码的输出结果。

func main() {
	var a = make([]string, 5, 10)
	for i := 0; i < 10; i++ {
		a = append(a, fmt.Sprintf("%v", i))
	}
	fmt.Println(a)
}
sortvar a = [...]int{3, 7, 8, 9, 1}

func main() {
	a := []int{4, 3, 2, 1, 5, 9, 8, 7, 6}
	fmt.Println(a)
	sort.Ints(a)
	fmt.Println("After sorted: ", a)
}

从本篇文章开始,我们正式进入了模块 2 的学习。在这之前,我们已经聊了很多的 Go 语言和编程方面的基础知识,相信你已经对 Go 语言的开发环境配置、常用源码文件写法,以及程序实体(尤其是变量)及其相关的各种概念和编程技巧(比如类型推断、变量重声明、可重名变量、类型断言、类型转换、别名类型和潜在类型等)都有了一定的理解。

它们都是我认为的 Go 语言编程基础中比较重要的部分,同时也是后续文章的基石。如果你在后面的学习过程中感觉有些吃力,那可能是基础仍未牢固,可以再回去复习一下。


我们这次主要讨论 Go 语言的数组(array)类型和切片(slice)类型。数组和切片有时候会让初学者感到困惑。

它们的共同点是都属于集合类的类型,并且,它们的值也都可以用来存储某一种类型的值(或者说元素)。

不过,它们最重要的不同是:数组类型的值(以下简称数组)的长度是固定的,而切片类型的值(以下简称切片)是可变长的。

[1]string[2]string

而切片的类型字面量中只有元素的类型,而没有长度。切片的长度可以自动地随着其中元素数量的增长而增长,但不会随着元素数量的减少而减小。

(数组与切片的字面量)

我们其实可以把切片看做是对数组的一层简单的封装,因为在每个切片的底层数据结构中,一定会包含一个数组。数组可以被叫做切片的底层数组,而切片也可以被看作是对数组的某个连续片段的引用。

也正因为如此,Go 语言的切片类型属于引用类型,同属引用类型的还有字典类型、通道类型、函数类型等;而 Go 语言的数组类型则属于值类型,同属值类型的有基础数据类型以及结构体类型。

注意,Go 语言里不存在像 Java 等编程语言中令人困惑的“传值或传引用”问题。在 Go 语言中,我们判断所谓的“传值”或者“传引用”只要看被传递的值的类型就好了。

如果传递的值是引用类型的,那么就是“传引用”。如果传递的值是值类型的,那么就是“传值”。从传递成本的角度讲,引用类型的值往往要比值类型的值低很多。

我们在数组和切片之上都可以应用索引表达式,得到的都会是某个元素。我们在它们之上也都可以应用切片表达式,也都会得到一个新的切片。

lencap

但要注意,数组的容量永远等于其长度,都是不可变的。切片的容量却不是这样,并且它的变化是有规律可寻的。

下面我们就通过一道题来了解一下。我们今天的问题就是:怎样正确估算切片的长度和容量?

为此,我编写了一个简单的命令源码文件 demo15.go。

package mainimport "fmt"func main() {// 示例 1。s1 := make([]int, 5)fmt.Printf("The length of s1: %d\n", len(s1))fmt.Printf("The capacity of s1: %d\n", cap(s1))fmt.Printf("The value of s1: %d\n", s1)s2 := make([]int, 5, 8)fmt.Printf("The length of s2: %d\n", len(s2))fmt.Printf("The capacity of s2: %d\n", cap(s2))fmt.Printf("The value of s2: %d\n", s2)}

复制代码

我描述一下它所做的事情。

make[]ints1make5s28
s1s2
s1s258

问题解析

s15s15makes28
s2s2

我在刚才说过,可以把切片看做是对数组的一层简单的封装,因为在每个切片的底层数据结构中,一定会包含一个数组。数组可以被叫做切片的底层数组,而切片也可以被看作是对数组的某个连续片段的引用。

8

现在你需要跟着我一起想象:有一个窗口,你可以通过这个窗口看到一个数组,但是不一定能看到该数组中的所有元素,有时候只能看到连续的一部分元素。

s2s2s2s2
s25

切片代表的窗口也会被划分成一个一个的小格子,就像我们家里的窗户那样。每个小格子都对应着其底层数组中的某一个元素。

s20s20404
make[]int{1, 2, 3}

但是当我们通过切片表达式基于某个数组或切片生成新切片的时候,情况就变得复杂起来了。

我们再来看一个例子:

s3 := []int{1, 2, 3, 4, 5, 6, 7, 8}s4 := s3[3:6]fmt.Printf("The length of s4: %d\n", len(s4))fmt.Printf("The capacity of s4: %d\n", cap(s4))fmt.Printf("The value of s4: %d\n", s4)

复制代码

s318s38s3[3:6]s4s4

这并不难,用减法就可以搞定。首先你要知道,切片表达式中的方括号里的那两个整数都代表什么。我换一种表达方式你也许就清楚了,即:[3, 6)。

[3:6]s3356
36s4633s402s335

(切片与数组的关系)

make

更通用的规则是:一个切片的容量可以被看作是透过这个窗口最多可以看到的底层数组中元素的个数。

s4s3s3s4

又因为,在底层数组不变的情况下,切片代表的窗口可以向右扩展,直至其底层数组的末尾。

s4835
s4s3
s4s4[0:cap(s4)][]int{4, 5, 6, 7, 8}5

知识扩展

问题 1:怎样估算切片容量的增长?

一旦一个切片无法容纳更多的元素,Go 语言就会想办法扩容。但它并不会改变原来的切片,而是会生成一个容量更大的切片,然后将把原有的元素和新元素一并拷贝到新切片中。在一般的情况下,你可以简单地认为新切片的容量(以下简称新容量)将会是原切片容量(以下简称原容量)的 2 倍。

10241.251.25
runtimegrowslice

我把展示上述扩容策略的一些例子都放到了 demo16.go 文件中。你可以去试运行看看。

问题 2:切片的底层数组什么时候会被替换?

确切地说,一个切片的底层数组永远不会被替换。为什么?虽然在扩容的时候 Go 语言一定会生成新的底层数组,但是它也同时生成了新的切片。

它只是把新的切片作为了新底层数组的窗口,而没有对原切片,及其底层数组做任何改动。

appendappend
append

总结

总结一下,我们今天一起探讨了数组和切片以及它们之间的关系。切片是基于数组的,可变长的,并且非常轻快。一个切片的容量总是固定的,而且一个切片也只会与某一个底层数组绑定在一起。

此外,切片的容量总会是在切片长度和底层数组长度之间的某一个值,并且还与切片窗口最左边对应的元素在底层数组中的位置有关系。那两个分别用减法计算切片长度和容量的方法你一定要记住。

append

思考题

这里仍然是聚焦于切片的问题。

  1. 如果有多个切片指向了同一个底层数组,那么你认为应该注意些什么?
  2. 怎样沿用“扩容”的思想对切片进行“缩容”?请写出代码。