原文: 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs
翻译: Go的50度灰:新Golang开发者要注意的陷阱、技巧和常见错误, 译者: 影风LEY
Go是一门简单有趣的语言,但与其他语言类似,它会有一些技巧。。。这些技巧的绝大部分并不是Go的缺陷造成的。如果你以前使用的是其他语言,那么这其中的有些错误就是很自然的陷阱。其它的是由错误的假设和缺少细节造成的。
如果你花时间学习这门语言,阅读官方说明、wiki、邮件列表讨论、大量的优秀博文和Rob Pike的展示,以及源代码,这些技巧中的绝大多数都是显而易见的。尽管不是每个人都是以这种方式开始学习的,但也没关系。如果你是Go语言新人,那么这里的信息将会节约你大量的调试代码的时间。
初级
开大括号不能放在单独的一行
在大多数其他使用大括号的语言中,你需要选择放置它们的位置。Go的方式不同。你可以为此感谢下自动分号的注入(没有预读)。是的,Go中也是有分号的:-)
失败的例子:
12345678
package mainimport "fmt"func main(){ //error, can't have the opening brace on a separate linefmt.Println("hello there!")}
编译错误:
/tmp/sandbox826898458/main.go:6: syntax error: unexpected semicolon or newline before {
有效的例子:
1234567
package mainimport "fmt"func main() {fmt.Println("works!")}
未使用的变量
如果你有未使用的变量,代码将编译失败。当然也有例外。在函数内一定要使用声明的变量,但未使用的全局变量是没问题的。
如果你给未使用的变量分配了一个新的值,代码还是会编译失败。你需要在某个地方使用这个变量,才能让编译器愉快的编译。
Fails:
12345678910
package mainvar gvar int //not an errorfunc main() {var one int //error, unused variabletwo := 2 //error, unused variablevar three int //error, even though it's assigned 3 on the next linethree = 3}
Compile Errors:
/tmp/sandbox473116179/main.go:6: one declared and not used
/tmp/sandbox473116179/main.go:7: two declared and not used
/tmp/sandbox473116179/main.go:8: three declared and not used
Works:
123456789101112131415161718
package mainimport "fmt"func main() {var one int_ = onetwo := 2fmt.Println(two)var three intthree = 3one = threevar four intfour = four}
另一个选择是注释掉或者移除未使用的变量 :-)
未使用的Imports
如果你引入一个包,而没有使用其中的任何函数、接口、结构体或者变量的话,代码将会编译失败。
你可以使用goimports来增加引入或者移除未使用的引用:
1
$ go get /x/tools/cmd/goimports
如果你真的需要引入的包,你可以添加一个下划线标记符,_,来作为这个包的名字,从而避免编译失败。下滑线标记符用于引入,但不使用。
Fails:
12345678910
package mainimport ("fmt""log""time")func main() {}
Compile Errors:
/tmp/sandbox627475386/main.go:4: imported and not used: "fmt"
/tmp/sandbox627475386/main.go:5: imported and not used: "log"
/tmp/sandbox627475386/main.go:6: imported and not used: "time"
Works:
12345678910111213
package mainimport (_ "fmt""log""time")var _ = log.Printlnfunc main() {_ = time.Now}
另一个选择是移除或者注释掉未使用的imports :-)
简式的变量声明仅可以在函数内部使用
Fails:
123456
package mainmyvar := 1 //errorfunc main() {}
Compile Error:
/tmp/sandbox265716165/main.go:3: non-declaration statement outside function body
Works:
123456
package mainvar myvar = 1func main() {}
使用简式声明重复声明变量
你不能在一个单独的声明中重复声明一个变量,但在多变量声明中这是允许的,其中至少要有一个新的声明变量。
重复变量需要在相同的代码块内,否则你将得到一个隐藏变量。
Fails:
123456
package mainfunc main() {one := 0one := 1 //error}
Compile Error:
/tmp/sandbox706333626/main.go:5: no new variables on left side of :=
Works:
12345678
package mainfunc main() {one := 0one, two := 1,2one,two = two,one}
偶然的变量隐藏Accidental Variable Shadowing
短式变量声明的语法如此的方便(尤其对于那些使用过动态语言的开发者而言),很容易让人把它当成一个正常的分配操作。如果你在一个新的代码块中犯了这个错误,将不会出现编译错误,但你的应用将不会做你所期望的事情。
1234567891011121314
package mainimport "fmt"func main() {x := 1fmt.Println(x) //prints 1{fmt.Println(x) //prints 1x := 2fmt.Println(x) //prints 2}fmt.Println(x) //prints 1 (bad if you need 2)}
即使对于经验丰富的Go开发者而言,这也是一个非常常见的陷阱。这个坑很容易挖,但又很难发现。
vet-shadowgo tool vet -shadow your_file.go
不使用显式类型,无法使用“nil”来初始化变量
nil
1234567
package mainfunc main() {var x = nil //error_ = x}
Compile Error:
/tmp/sandbox188239583/main.go:4: use of untyped nil
Works:
1234567
package mainfunc main() {var x interface{} = nil_ = x}
使用“nil” Slices and Maps
nil
Works:
123456
package mainfunc main() {var s []ints = append(s,1)}
Fails:
1234567
package mainfunc main() {var m map[string]intm["one"] = 1 //error}
Map的容量
你可以在map创建时指定它的容量,但你无法在map上使用cap()函数。
Fails:
123456
package mainfunc main() {m := make(map[string]int,99)cap(m) //error}
Compile Error:
/tmp/sandbox326543983/main.go:5: invalid argument m (type map[string]int) for cap
nil
nil
Fails:
123456789
package mainfunc main() {var x string = nil //errorif x == nil { //errorx = "default"}}
Compile Errors:
/tmp/sandbox630560459/main.go:4: cannot use nil as type string in assignment /tmp/sandbox630560459/main.go:6: invalid operation: x == nil (mismatched types string and nil)
Works:
123456789
package mainfunc main() {var x string //defaults to "" (zero value)if x == "" {x = "default"}}
Array函数的参数
如果你是一个C或则C++开发者,那么数组对你而言就是指针。当你向函数中传递数组时,函数会参照相同的内存区域,这样它们就可以修改原始的数据。Go中的数组是数值,因此当你向函数中传递数组时,函数会得到原始数组数据的一份复制。如果你打算更新数组的数据,这将会是个问题。
1234567891011121314
package mainimport "fmt"func main() {x := [3]int{1,2,3}func(arr [3]int) {arr[0] = 7fmt.Println(arr) //prints [7 2 3]}(x)fmt.Println(x) //prints [1 2 3] (not ok if you need [7 2 3])}
如果你需要更新原始数组的数据,你可以使用数组指针类型。
1234567891011121314
package mainimport "fmt"func main() {x := [3]int{1,2,3}func(arr *[3]int) {(*arr)[0] = 7fmt.Println(arr) //prints &[7 2 3]}(&x)fmt.Println(x) //prints [7 2 3]}
另一个选择是使用slice。即使你的函数得到了slice变量的一份拷贝,它依旧会参照原始的数据。
1234567891011121314
package mainimport "fmt"func main() {x := []int{1,2,3}func(arr []int) {arr[0] = 7fmt.Println(arr) //prints [7 2 3]}(x)fmt.Println(x) //prints [7 2 3]}
在Slice和Array使用“range”语句时的出现的不希望得到的值
如果你在其他的语言中使用“for-in”或者“foreach”语句时会发生这种情况。Go中的“range”语法不太一样。它会得到两个值:第一个值是元素的索引,而另一个值是元素的数据。
Bad:
1234567891011
package mainimport "fmt"func main() {x := []string{"a","b","c"}for v := range x {fmt.Println(v) //prints 0, 1, 2}}
Good:
1234567891011
package mainimport "fmt"func main() {x := []string{"a","b","c"}for _, v := range x {fmt.Println(v) //prints a, b, c}}
Slices和Arrays是一维的
看起来Go好像支持多维的Array和Slice,但不是这样的。尽管可以创建数组的数组或者切片的切片。对于依赖于动态多维数组的数值计算应用而言,Go在性能和复杂度上还相距甚远。
你可以使用纯一维数组、“独立”切片的切片,“共享数据”切片的切片来构建动态的多维数组。
如果你使用纯一维的数组,你需要处理索引、边界检查、当数组需要变大时的内存重新分配。
使用“独立”slice来创建一个动态的多维数组需要两步。首先,你需要创建一个外部的slice。然后,你需要分配每个内部的slice。内部的slice相互之间独立。你可以增加减少它们,而不会影响其他内部的slice。
1234567891011
package mainfunc main() {x := 2y := 4table := make([][]int,x)for i:= range table {table[i] = make([]int,y)}}
使用“共享数据”slice的slice来创建一个动态的多维数组需要三步。首先,你需要创建一个用于存放原始数据的数据“容器”。然后,你再创建外部的slice。最后,通过重新切片原始数据slice来初始化各个内部的slice。
12345678910111213141516171819202122
package mainimport "fmt"func main() {h, w := 2, 4raw := make([]int,h*w)for i := range raw {raw[i] = i}fmt.Println(raw,&raw[4])//prints: [0 1 2 3 4 5 6 7] <ptr_addr_x>table := make([][]int,h)for i:= range table {table[i] = raw[i*w:i*w + w]}fmt.Println(table,&table[1][0])//prints: [[0 1 2 3] [4 5 6 7]] <ptr_addr_x>}
关于多维array和slice已经有了专门申请,但现在看起来这是个低优先级的特性。
访问不存在的Map Keys
这对于那些希望得到“nil”标示符的开发者而言是个技巧(和其他语言中做的一样)。如果对应的数据类型的“零值”是“nil”,那返回的值将会是“nil”,但对于其他的数据类型是不一样的。检测对应的“零值”可以用于确定map中的记录是否存在,但这并不总是可信(比如,如果在二值的map中“零值”是false,这时你要怎么做)。检测给定map中的记录是否存在的最可信的方法是,通过map的访问操作,检查第二个返回的值。
Bad:
1234567891011
package mainimport "fmt"func main() {x := map[string]string{"one":"a","two":"","three":"c"}if v := x["two"]; v == "" { //incorrectfmt.Println("no entry")}}
Good:
1234567891011
package mainimport "fmt"func main() {x := map[string]string{"one":"a","two":"","three":"c"}if _,ok := x["two"]; !ok {fmt.Println("no entry")}}
Strings无法修改
尝试使用索引操作来更新字符串变量中的单个字符将会失败。string是只读的byte slice(和一些额外的属性)。如果你确实需要更新一个字符串,那么使用byte slice,并在需要时把它转换为string类型。
Fails:
12345678910
package mainimport "fmt"func main() {x := "text"x[0] = 'T'fmt.Println(x)}
Compile Error:
/tmp/sandbox305565531/main.go:7: cannot assign to x[0]
Works:
1234567891011
package mainimport "fmt"func main() {x := "text"xbytes := []byte(x)xbytes[0] = 'T'fmt.Println(string(xbytes)) //prints Text}
需要注意的是:这并不是在文字string中更新字符的正确方式,因为给定的字符可能会存储在多个byte中。如果你确实需要更新一个文字string,先把它转换为一个rune slice。即使使用rune slice,单个字符也可能会占据多个rune,比如当你的字符有特定的重音符号时就是这种情况。这种复杂又模糊的“字符”本质是Go字符串使用byte序列表示的原因。
String和Byte Slice之间的转换
byte sliceslicebyte
[]bytestringstring[]byte
[]bytemap[string]m[string(key)]
[]bytefor rangefor i,v := range []byte(str) {...}
String和索引操作
字符串上的索引操作返回一个byte值,而不是一个字符(和其他语言中的做法一样)。
123456789
package mainimport "fmt"func main() {x := "text"fmt.Println(x[0]) //print 116fmt.Printf("%T",x[0]) //prints uint8}
如果你需要访问特定的字符串“字符”(unicode编码的points/runes),使用for range。官方的“unicode/utf8”包和实验中的utf8string包(/x/exp/utf8string)也可以用。utf8string包中包含了一个很方便的At()方法。把字符串转换为rune的切片也是一个选项。
字符串不总是UTF8文本
字符串的值不需要是UTF8的文本。它们可以包含任意的字节。只有在string literal使用时,字符串才会是UTF8。即使之后它们可以使用转义序列来包含其他的数据。
为了知道字符串是否是UTF8,你可以使用“unicode/utf8”包中的ValidString()函数。
1234567891011121314
package mainimport ("fmt""unicode/utf8")func main() {data1 := "ABC"fmt.Println(utf8.ValidString(data1)) //prints: truedata2 := "A\xfeC"fmt.Println(utf8.ValidString(data2)) //prints: false}
字符串的长度
让我们假设你是Python开发者,你有下面这段代码:
12
data = u'?'print(len(data)) #prints: 1
当把它转换为Go代码时,你可能会大吃一惊。
12345678
package mainimport "fmt"func main() {data := "?"fmt.Println(len(data)) //prints: 3}
len()
RuneCountInString()
1234567891011
package mainimport ("fmt""unicode/utf8")func main() {data := "?"fmt.Println(utf8.RuneCountInString(data)) //prints: 1}
RuneCountInString()
123456789101112
package mainimport ("fmt""unicode/utf8")func main() {data := "e?"fmt.Println(len(data)) //prints: 3fmt.Println(utf8.RuneCountInString(data)) //prints: 2}
在多行的Slice、Array和Map语句中遗漏逗号
Fails:
123456789
package mainfunc main() {x := []int{1,2 //error}_ = x}
Compile Errors:
/tmp/sandbox367520156/main.go:6: syntax error: need trailing comma before newline in composite literal /tmp/sandbox367520156/main.go:8: non-declaration statement outside function body /tmp/sandbox367520156/main.go:9: syntax error: unexpected }
Works:
123456789101112
package mainfunc main() {x := []int{1,2,}x = xy := []int{3,4,} //no errory = y}
当你把声明折叠到单行时,如果你没加末尾的逗号,你将不会得到编译错误。
log.Fatal和log.Panic不仅仅是Log
Fatal*()Panic*()
12345678
package mainimport "log"func main() {log.Fatalln("Fatal Level: log entry") //app exits herelog.Println("Normal Level: log entry")}
内建的数据结构操作不是同步的
即使Go本身有很多特性来支持并发,并发安全的数据集合并不是其中之一 :-)确保数据集合以原子的方式更新是你的职责。Goroutines和channels是实现这些原子操作的推荐方式,但你也可以使用“sync”包,如果它对你的应用有意义的话。
String在“range”语句中的迭代值
索引值(“range”操作返回的第一个值)是返回的第二个值的当前“字符”(unicode编码的point/rune)的第一个byte的索引。它不是当前“字符”的索引,这与其他语言不同。注意真实的字符可能会由多个rune表示。如果你需要处理字符,确保你使用了“norm”包(/x/text/unicode/norm)。
for range
1234567891011121314151617
package mainimport "fmt"func main() {data := "A\xfe\x02\xff\x04"for _,v := range data {fmt.Printf("%#x ",v)}//prints: 0x41 0xfffd 0x2 0xfffd 0x4 (not ok)fmt.Println()for _,v := range []byte(data) {fmt.Printf("%#x ",v)}//prints: 0x41 0xfe 0x2 0xff 0x4 (good)}
对Map使用“for range”语句迭代
如果你希望以某个顺序(比如,按key值排序)的方式得到元素,就需要这个技巧。每次的map迭代将会生成不同的结果。Go的runtime有心尝试随机化迭代顺序,但并不总会成功,这样你可能得到一些相同的map迭代结果。所以如果连续看到5个相同的迭代结果,不要惊讶。
12345678910
package mainimport "fmt"func main() {m := map[string]int{"one":1,"two":2,"three":3,"four":4}for k,v := range m {fmt.Println(k,v)}}
"switch"声明中的失效行为
在“switch”声明语句中的“case”语句块在默认情况下会break。这和其他语言中的进入下一个“next”代码块的默认行为不同。
1234567891011121314151617
package mainimport "fmt"func main() {isSpace := func(ch byte) bool {switch(ch) {case ' ': //errorcase '\t':return true}return false}fmt.Println(isSpace('\t')) //prints true (ok)fmt.Println(isSpace(' ')) //prints false (not ok)}
你可以通过在每个“case”块的结尾使用“fallthrough”,来强制“case”代码块进入。你也可以重写switch语句,来使用“case”块中的表达式列表。
12345678910111213141516
package mainimport "fmt"func main() {isSpace := func(ch byte) bool {switch(ch) {case ' ', '\t':return true}return false}fmt.Println(isSpace('\t')) //prints true (ok)fmt.Println(isSpace(' ')) //prints true (ok)}
自增和自减
许多语言都有自增和自减操作。不像其他语言,Go不支持前置版本的操作。你也无法在表达式中使用这两个操作符。
Fails:
12345678910
package mainimport "fmt"func main() {data := []int{1,2,3}i := 0++i //errorfmt.Println(data[i++]) //error}
Compile Errors:
/tmp/sandbox101231828/main.go:8: syntax error: unexpected ++ /tmp/sandbox101231828/main.go:9: syntax error: unexpected ++, expecting :
Works:
12345678910
package mainimport "fmt"func main() {data := []int{1,2,3}i := 0i++fmt.Println(data[i])}
按位NOT操作
~
Fails:
1234567
package mainimport "fmt"func main() {fmt.Println(~2) //error}
Compile Error:
/tmp/sandbox965529189/main.go:6: the bitwise complement operator is ^
Works:
12345678
package mainimport "fmt"func main() {var d uint8 = 2fmt.Printf("%08b\n",^d)}
^
^
&^A AND (NOT B)
123456789101112131415161718
package mainimport "fmt"func main() {var a uint8 = 0x82var b uint8 = 0x02fmt.Printf("%08b [A]\n",a)fmt.Printf("%08b [B]\n",b)fmt.Printf("%08b (NOT B)\n",^b)fmt.Printf("%08b ^ %08b = %08b [B XOR 0xff]\n",b,0xff,b ^ 0xff)fmt.Printf("%08b ^ %08b = %08b [A XOR B]\n",a,b,a ^ b)fmt.Printf("%08b & %08b = %08b [A AND B]\n",a,b,a & b)fmt.Printf("%08b &^%08b = %08b [A 'AND NOT' B]\n",a,b,a &^ b)fmt.Printf("%08b&(^%08b)= %08b [A AND (NOT B)]\n",a,b,a & (^b))}
操作优先级的差异
&^
1234567891011121314151617181920
package mainimport "fmt"func main() {fmt.Printf("0x2 & 0x2 + 0x4 -> %#x\n",0x2 & 0x2 + 0x4)//prints: 0x2 & 0x2 + 0x4 -> 0x6//Go: (0x2 & 0x2) + 0x4//C++: 0x2 & (0x2 + 0x4) -> 0x2fmt.Printf("0x2 + 0x2 << 0x1 -> %#x\n",0x2 + 0x2 << 0x1)//prints: 0x2 + 0x2 << 0x1 -> 0x6//Go: 0x2 + (0x2 << 0x1)//C++: (0x2 + 0x2) << 0x1 -> 0x8fmt.Printf("0xf | 0x2 ^ 0x2 -> %#x\n",0xf | 0x2 ^ 0x2)//prints: 0xf | 0x2 ^ 0x2 -> 0xd//Go: (0xf | 0x2) ^ 0x2//C++: 0xf | (0x2 ^ 0x2) -> 0xf}
未导出的结构体不会被编码
以小写字母开头的结构体将不会被(json、xml、gob等)编码,因此当你编码这些未导出的结构体时,你将会得到零值。
Fails:
12345678910111213141516171819202122232425
package mainimport ("fmt""encoding/json")type MyData struct {One inttwo string}func main() {in := MyData{1,"two"}fmt.Printf("%#v\n",in) //prints main.MyData{One:1, two:"two"}encoded,_ := json.Marshal(in)fmt.Println(string(encoded)) //prints {"One":1}var out MyDatajson.Unmarshal(encoded,&out)fmt.Printf("%#v\n",out) //prints main.MyData{One:1, two:""}}
有活动的Goroutines下的应用退出
应用将不会等待所有的goroutines完成。这对于初学者而言是个很常见的错误。每个人都是以某个程度开始,因此如果犯了初学者的错误也没神马好丢脸的 :-)
12345678910111213141516171819202122
package mainimport ("fmt""time")func main() {workerCount := 2for i := 0; i < workerCount; i++ {go doit(i)}time.Sleep(1 * time.Second)fmt.Println("all done!")}func doit(workerId int) {fmt.Printf("[%v] is running\n",workerId)time.Sleep(3 * time.Second)fmt.Printf("[%v] is done\n",workerId)}
你将会看到:
123
[0] is running[1] is runningall done!
一个最常见的解决方法是使用“WaitGroup”变量。它将会让主goroutine等待所有的worker goroutine完成。如果你的应用有长时运行的消息处理循环的worker,你也将需要一个方法向这些goroutine发送信号,让它们退出。你可以给各个worker发送一个“kill”消息。另一个选项是关闭一个所有worker都接收的channel。这是一次向所有goroutine发送信号的简单方式。
12345678910111213141516171819202122232425262728
package mainimport ("fmt""sync")func main() {var wg sync.WaitGroupdone := make(chan struct{})workerCount := 2for i := 0; i < workerCount; i++ {wg.Add(1)go doit(i,done,wg)}close(done)wg.Wait()fmt.Println("all done!")}func doit(workerId int,done <-chan struct{},wg sync.WaitGroup) {fmt.Printf("[%v] is running\n",workerId)defer wg.Done()<- donefmt.Printf("[%v] is done\n",workerId)}
如果你运行这个应用,你将会看到:
1234
[0] is running[0] is done[1] is running[1] is done
看起来所有的worker在主goroutine退出前都完成了。棒!然而,你也将会看到这个:
1
fatal error: all goroutines are asleep - deadlock!
wg.Done()
wg.Done()
12345678910111213141516171819202122232425262728293031323334353637383940
package mainimport ("fmt""sync")func main() {var wg sync.WaitGroupdone := make(chan struct{})wq := make(chan interface{})workerCount := 2for i := 0; i < workerCount; i++ {wg.Add(1)go doit(i,wq,done,&wg)}for i := 0; i < workerCount; i++ {wq <- i}close(done)wg.Wait()fmt.Println("all done!")}func doit(workerId int, wq <-chan interface{},done <-chan struct{},wg *sync.WaitGroup) {fmt.Printf("[%v] is running\n",workerId)defer wg.Done()for {select {case m := <- wq:fmt.Printf("[%v] m => %v\n",workerId,m)case <- done:fmt.Printf("[%v] is done\n",workerId)return}}}
现在它会如预期般工作 :-)
向无缓存的Channel发送消息,只要目标接收者准备好就会立即返回
发送者将不会被阻塞,除非消息正在被接收者处理。根据你运行代码的机器的不同,接收者的goroutine可能会或者不会有足够的时间,在发送者继续执行前处理消息。
12345678910111213141516
package mainimport "fmt"func main() {ch := make(chan string)go func() {for m := range ch {fmt.Println("processed:",m)}}()ch <- "cmd.1"ch <- "cmd.2" //won't be processed}
向已关闭的Channel发送会引起Panic
okfalseokfalse
向关闭的channel中发送数据会引起panic。这个行为有文档说明,但对于新的Go开发者的直觉不同,他们可能希望发送行为与接收行为很像。
123456789101112131415161718192021
package mainimport ("fmt""time")func main() {ch := make(chan int)for i := 0; i < 3; i++ {go func(idx int) {ch <- (idx + 1) * 2}(i)}//get the first resultfmt.Println(<-ch)close(ch) //not ok (you still have other senders)//do other worktime.Sleep(2 * time.Second)}
根据不同的应用,修复方法也将不同。可能是很小的代码修改,也可能需要修改应用的设计。无论是哪种方法,你都需要确保你的应用不会向关闭的channel中发送数据。
上面那个有bug的例子可以通过使用一个特殊的废弃的channel来向剩余的worker发送不再需要它们的结果的信号来修复。
12345678910111213141516171819202122232425
package mainimport ("fmt""time")func main() {ch := make(chan int)done := make(chan struct{})for i := 0; i < 3; i++ {go func(idx int) {select {case ch <- (idx + 1) * 2: fmt.Println(idx,"sent result")case <- done: fmt.Println(idx,"exiting")}}(i)}//get first resultfmt.Println("result:",<-ch)close(done)//do other worktime.Sleep(3 * time.Second)}
使用"nil" Channels
nil
1234567891011121314151617181920
package mainimport ("fmt""time")func main() {var ch chan intfor i := 0; i < 3; i++ {go func(idx int) {ch <- (idx + 1) * 2}(i)}//get first resultfmt.Println("result:",<-ch)//do other worktime.Sleep(2 * time.Second)}
如果运行代码你将会看到一个runtime错误:
1
fatal error: all goroutines are asleep - deadlock!
selectcase
123456789101112131415161718192021222324252627282930313233343536
package mainimport "fmt"import "time"func main() {inch := make(chan int)outch := make(chan int)go func() {var in <- chan int = inchvar out chan <- intvar val intfor {select {case out <- val:out = nilin = inchcase val = <- in:out = outchin = nil}}}()go func() {for r := range outch {fmt.Println("result:",r)}}()time.Sleep(0)inch <- 1inch <- 2time.Sleep(3 * time.Second)}
传值方法的接收者无法修改原有的值
方法的接收者就像常规的函数参数。如果声明为值,那么你的函数/方法得到的是接收者参数的拷贝。这意味着对接收者所做的修改将不会影响原有的值,除非接收者是一个map或者slice变量,而你更新了集合中的元素,或者你更新的域的接收者是指针。
1234567891011121314151617181920212223242526272829303132333435
package mainimport "fmt"type data struct {num intkey *stringitems map[string]bool}func (this *data) pmethod() {this.num = 7}func (this data) vmethod() {this.num = 8*this.key = "v.key"this.items["vmethod"] = true}func main() {key := "key.1"d := data{1,&key,make(map[string]bool)}fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)//prints num=1 key=key.1 items=map[]d.pmethod()fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)//prints num=7 key=key.1 items=map[]d.vmethod()fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)//prints num=7 key=v.key items=map[vmethod:true]}
中级
关闭HTTP的响应
当你使用标准http库发起请求时,你得到一个http的响应变量。如果你不读取响应主体,你依旧需要关闭它。注意对于空的响应你也一定要这么做。对于新的Go开发者而言,这个很容易就会忘掉。
一些新的Go开发者确实尝试关闭响应主体,但他们在错误的地方做。
123456789101112131415161718192021222324
package mainimport ("fmt""net/http""io/ioutil")func main() {resp, err := http.Get("?format=json")defer resp.Body.Close()//not okif err != nil {fmt.Println(err)return}body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Println(err)return}fmt.Println(string(body))}
respnilruntime panic
defer
123456789101112131415161718192021222324
package mainimport ("fmt""net/http""io/ioutil")func main() {resp, err := http.Get("?format=json")if err != nil {fmt.Println(err)return}defer resp.Body.Close()//ok, most of the time :-)body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Println(err)return}fmt.Println(string(body))}
respnilerrnon-nilnon-nil
non-nildefer
123456789101112131415161718192021222324252627
package mainimport ("fmt""net/http""io/ioutil")func main() {resp, err := http.Get("?format=json")if resp != nil {defer resp.Body.Close()}if err != nil {fmt.Println(err)return}body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Println(err)return}fmt.Println(string(body))}
resp.Body.Close()
如果http连接的重用对你的应用很重要,你可能需要在响应处理逻辑的后面添加像下面的代码:
1
_, err = io.Copy(ioutil.Discard, resp.Body)
如果你不立即读取整个响应将是必要的,这可能在你处理json API响应时会发生:
1
json.NewDecoder(resp.Body).Decode(&data)
关闭HTTP的连接
一些HTTP服务器保持会保持一段时间的网络连接(根据HTTP 1.1的说明和服务器端的“keep-alive”配置)。默认情况下,标准http库只在目标HTTP服务器要求关闭时才会关闭网络连接。这意味着你的应用在某些条件下消耗完sockets/file的描述符。
Closetrue
ConnectioncloseConnection: close
12345678910111213141516171819202122232425262728293031323334353637
package mainimport ("fmt""net/http""io/ioutil")func main() {req, err := http.NewRequest("GET","",nil)if err != nil {fmt.Println(err)return}req.Close = true//or do this://req.Header.Add("Connection", "close")resp, err := http.DefaultClient.Do(req)if resp != nil {defer resp.Body.Close()}if err != nil {fmt.Println(err)return}body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Println(err)return}fmt.Println(len(string(body)))}
你也可以取消http的全局连接复用。你将需要为此创建一个自定义的http传输配置。
1234567891011121314151617181920212223242526272829303132
package mainimport ("fmt""net/http""io/ioutil")func main() {tr := &http.Transport{DisableKeepAlives: true}client := &http.Client{Transport: tr}resp, err := client.Get("")if resp != nil {defer resp.Body.Close()}if err != nil {fmt.Println(err)return}fmt.Println(resp.StatusCode)body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Println(err)return}fmt.Println(len(string(body)))}
如果你向同一个HTTP服务器发送大量的请求,那么把保持网络连接的打开是没问题的。然而,如果你的应用在短时间内向大量不同的HTTP服务器发送一两个请求,那么在引用收到响应后立刻关闭网络连接是一个好主意。增加打开文件的限制数可能也是个好主意。当然,正确的选择源自于应用。
比较Structs, Arrays, Slices, and Maps
如果结构体中的各个元素都可以用你可以使用等号来比较的话,那就可以使用相号, ==,来比较结构体变量。
12345678910111213141516171819202122
package mainimport "fmt"type data struct {num intfp float32complex complex64str stringchar runeyes boolevents <-chan stringhandler interface{}ref *byteraw [10]byte}func main() {v1 := data{}v2 := data{}fmt.Println("v1 == v2:",v1 == v2) //prints: v1 == v2: true}
如果结构体中的元素无法比较,那使用等号将导致编译错误。注意数组仅在它们的数据元素可比较的情况下才可以比较。
1234567891011121314151617
package mainimport "fmt"type data struct {num int //okchecks [10]func() bool //not comparabledoit func() bool //not comparablem map[string] string //not comparablebytes []byte //not comparable}func main() {v1 := data{}v2 := data{}fmt.Println("v1 == v2:",v1 == v2)}
Go确实提供了一些助手函数,用于比较那些无法使用等号比较的变量。
DeepEqual()
12345678910111213141516171819202122232425262728
package mainimport ("fmt""reflect")type data struct {num int //okchecks [10]func() bool //not comparabledoit func() bool //not comparablem map[string] string //not comparablebytes []byte //not comparable}func main() {v1 := data{}v2 := data{}fmt.Println("v1 == v2:",reflect.DeepEqual(v1,v2)) //prints: v1 == v2: truem1 := map[string]string{"one": "a","two": "b"}m2 := map[string]string{"two": "b", "one": "a"}fmt.Println("m1 == m2:",reflect.DeepEqual(m1, m2)) //prints: m1 == m2: trues1 := []int{1, 2, 3}s2 := []int{1, 2, 3}fmt.Println("s1 == s2:",reflect.DeepEqual(s1, s2)) //prints: s1 == s2: true}
DeepEqual()
123456789101112
package mainimport ("fmt""reflect")func main() {var b1 []byte = nilb2 := []byte{}fmt.Println("b1 == b2:",reflect.DeepEqual(b1, b2)) //prints: b1 == b2: false}
DeepEqual()sliceslicebytes.Equal()bytes.Equal()
123456789101112
package mainimport ("fmt""bytes")func main() {var b1 []byte = nilb2 := []byte{}fmt.Println("b1 == b2:",bytes.Equal(b1, b2)) //prints: b1 == b2: true}
DeepEqual()
1234567891011121314151617181920212223242526272829
package mainimport ("fmt""reflect""encoding/json")func main() {var str string = "one"var in interface{} = "one"fmt.Println("str == in:",str == in,reflect.DeepEqual(str, in))//prints: str == in: true truev1 := []string{"one","two"}v2 := []interface{}{"one","two"}fmt.Println("v1 == v2:",reflect.DeepEqual(v1, v2))//prints: v1 == v2: false (not ok)data := map[string]interface{}{"code": 200,"value": []string{"one","two"},}encoded, _ := json.Marshal(data)var decoded map[string]interface{}json.Unmarshal(encoded, &decoded)fmt.Println("data == decoded:",reflect.DeepEqual(data, decoded))//prints: data == decoded: false (not ok)}
byte slice==bytes.Equal()bytes.Compare()ToUpper()ToLower()strings.EqualFold()bytes.EqualFold()
reflect.DeepEqual()bytes.Equal()bytes.Compare()subtle.ConstantTimeCompare()
从Panic中恢复
recover()panicdeferrecover()
Incorrect:
12345678910
package mainimport "fmt"func main() {recover() //doesn't do anythingpanic("not good")recover() //won't be executed :)fmt.Println("ok")}
Works:
1234567891011
package mainimport "fmt"func main() {defer func() {fmt.Println("recovered:",recover())}()panic("not good")}
recover()defer
Fails:
123456789101112131415
package mainimport "fmt"func doRecover() {fmt.Println("recovered =>",recover()) //prints: recovered => <nil>}func main() {defer func() {doRecover() //panic is not recovered}()panic("not good")}
在Slice, Array, and Map "range"语句中更新引用元素的值
在“range”语句中生成的数据的值是真实集合元素的拷贝。它们不是原有元素的引用。
这意味着更新这些值将不会修改原来的数据。同时也意味着使用这些值的地址将不会得到原有数据的指针。
123456789101112
package mainimport "fmt"func main() {data := []int{1,2,3}for _,v := range data {v *= 10 //original item is not changed}fmt.Println("data:",data) //prints data: [1 2 3]}
如果你需要更新原有集合中的数据,使用索引操作符来获得数据。
123456789101112
package mainimport "fmt"func main() {data := []int{1,2,3}for i,_ := range data {data[i] *= 10}fmt.Println("data:",data) //prints data: [10 20 30]}
如果你的集合保存的是指针,那规则会稍有不同。
如果要更新原有记录指向的数据,你依然需要使用索引操作,但你可以使用for range语句中的第二个值来更新存储在目标位置的数据。
12345678910111213
package mainimport "fmt"func main() {data := []*struct{num int} { {1},{2},{3} }for _,v := range data {v.num *= 10}fmt.Println(data[0],data[1],data[2]) //prints &{10} &{20} &{30}}
在Slice中"隐藏"数据
当你重新划分一个slice时,新的slice将引用原有slice的数组。如果你忘了这个行为的话,在你的应用分配大量临时的slice用于创建新的slice来引用原有数据的一小部分时,会导致难以预期的内存使用。
1234567891011121314
package mainimport "fmt"func get() []byte {raw := make([]byte,10000)fmt.Println(len(raw),cap(raw),&raw[0]) //prints: 10000 10000 <byte_addr_x>return raw[:3]}func main() {data := get()fmt.Println(len(data),cap(data),&data[0]) //prints: 3 10000 <byte_addr_x>}
为了避免这个陷阱,你需要从临时的slice中拷贝数据(而不是重新划分slice)。
12345678910111213141516
package mainimport "fmt"func get() []byte {raw := make([]byte,10000)fmt.Println(len(raw),cap(raw),&raw[0]) //prints: 10000 10000 <byte_addr_x>res := make([]byte,3)copy(res,raw[:3])return res}func main() {data := get()fmt.Println(len(data),cap(data),&data[0]) //prints: 3 3 <byte_addr_y>}
Slice的数据“毁坏”
比如说你需要重新一个路径(在slice中保存)。你通过修改第一个文件夹的名字,然后把名字合并来创建新的路劲,来重新划分指向各个文件夹的路径。
1234567891011121314151617181920212223
package mainimport ("fmt""bytes")func main() {path := []byte("AAAA/BBBBBBBBB")sepIndex := bytes.IndexByte(path,'/')dir1 := path[:sepIndex]dir2 := path[sepIndex+1:]fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAAfmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBBdir1 = append(dir1,"suffix"...)path = bytes.Join([][]byte{dir1,dir2},[]byte{'/'})fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAAsuffixfmt.Println("dir2 =>",string(dir2)) //prints: dir2 => uffixBBBB (not ok)fmt.Println("new path =>",string(path))}
结果与你想的不一样。与"AAAAsuffix/BBBBBBBBB"相反,你将会得到"AAAAsuffix/uffixBBBB"。这个情况的发生是因为两个文件夹的slice都潜在的引用了同一个原始的路径slice。这意味着原始路径也被修改了。根据你的应用,这也许会是个问题。
通过分配新的slice并拷贝需要的数据,你可以修复这个问题。另一个选择是使用完整的slice表达式。
1234567891011121314151617181920212223
package mainimport ("fmt""bytes")func main() {path := []byte("AAAA/BBBBBBBBB")sepIndex := bytes.IndexByte(path,'/')dir1 := path[:sepIndex:sepIndex] //full slice expressiondir2 := path[sepIndex+1:]fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAAfmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBBdir1 = append(dir1,"suffix"...)path = bytes.Join([][]byte{dir1,dir2},[]byte{'/'})fmt.Println("dir1 =>",string(dir1)) //prints: dir1 => AAAAsuffixfmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBB (ok now)fmt.Println("new path =>",string(path))}
完整的slice表达式中的额外参数可以控制新的slice的容量。现在在那个slice后添加元素将会触发一个新的buffer分配,而不是覆盖第二个slice中的数据。
陈旧的(Stale)Slices
多个slice可以引用同一个数据。比如,当你从一个已有的slice创建一个新的slice时,这就会发生。如果你的应用功能需要这种行为,那么你将需要关注下“走味的”slice。
在某些情况下,在一个slice中添加新的数据,在原有数组无法保持更多新的数据时,将导致分配一个新的数组。而现在其他的slice还指向老的数组(和老的数据)。
1234567891011121314151617181920212223
import "fmt"func main() {s1 := []int{1,2,3}fmt.Println(len(s1),cap(s1),s1) //prints 3 3 [1 2 3]s2 := s1[1:]fmt.Println(len(s2),cap(s2),s2) //prints 2 2 [2 3]for i := range s2 { s2[i] += 20 }//still referencing the same arrayfmt.Println(s1) //prints [1 22 23]fmt.Println(s2) //prints [22 23]s2 = append(s2,4)for i := range s2 { s2[i] += 10 }//s1 is now "stale"fmt.Println(s1) //prints [1 22 23]fmt.Println(s2) //prints [32 33 14]}
类型声明和方法
当你通过把一个现有(非interface)的类型定义为一个新的类型时,新的类型不会继承现有类型的方法。
Fails:
1234567891011
package mainimport "sync"type myMutex sync.Mutexfunc main() {var mtx myMutexmtx.Lock() //errormtx.Unlock() //error}
Compile Errors:
/tmp/sandbox106401185/main.go:9: mtx.Lock undefined (type myMutex has no field or method Lock) /tmp/sandbox106401185/main.go:10: mtx.Unlock undefined (type myMutex has no field or method Unlock)
如果你确实需要原有类型的方法,你可以定义一个新的struct类型,用匿名方式把原有类型嵌入其中。
Works:
12345678910111213
package mainimport "sync"type myLocker struct {sync.Mutex}func main() {var lock myLockerlock.Lock() //oklock.Unlock() //ok}
interface类型的声明也会保留它们的方法集合。
Works:
1234567891011
package mainimport "sync"type myLocker sync.Lockerfunc main() {var lock myLocker = new(sync.Mutex)lock.Lock() //oklock.Unlock() //ok}
从"for switch"和"for select"代码块中跳出
没有标签的“break”声明只能从内部的switch/select代码块中跳出来。如果无法使用“return”声明的话,那就为外部循环定义一个标签是另一个好的选择。
12345678910111213141516
package mainimport "fmt"func main() {loop:for {switch {case true:fmt.Println("breaking out...")break loop}}fmt.Println("out!")}
"goto"声明也可以完成这个功能。。。
"for"声明中的迭代变量和闭包
这在Go中是个很常见的技巧。for语句中的迭代变量在每次迭代时被重新使用。这就意味着你在for循环中创建的闭包(即函数字面量)将会引用同一个变量(而在那些goroutine开始执行时就会得到那个变量的值)。
Incorrect:
12345678910111213141516171819
package mainimport ("fmt""time")func main() {data := []string{"one","two","three"}for _,v := range data {go func() {fmt.Println(v)}()}time.Sleep(3 * time.Second)//goroutines print: three, three, three}
最简单的解决方法(不需要修改goroutine)是,在for循环代码块内把当前迭代的变量值保存到一个局部变量中。
Works:
1234567891011121314151617181920
package mainimport ("fmt""time")func main() {data := []string{"one","two","three"}for _,v := range data {vcopy := v //go func() {fmt.Println(vcopy)}()}time.Sleep(3 * time.Second)//goroutines print: one, two, three}
另一个解决方法是把当前的迭代变量作为匿名goroutine的参数。
Works:
12345678910111213141516171819
package mainimport ("fmt""time")func main() {data := []string{"one","two","three"}for _,v := range data {go func(in string) {fmt.Println(in)}(v)}time.Sleep(3 * time.Second)//goroutines print: one, two, three}
下面这个陷阱稍微复杂一些的版本。
Incorrect:
12345678910111213141516171819202122232425
package mainimport ("fmt""time")type field struct {name string}func (p *field) print() {fmt.Println(p.name)}func main() {data := []field{ {"one"},{"two"},{"three"} }for _,v := range data {go v.print()}time.Sleep(3 * time.Second)//goroutines print: three, three, three}
Works:
1234567891011121314151617181920212223242526
package mainimport ("fmt""time")type field struct {name string}func (p *field) print() {fmt.Println(p.name)}func main() {data := []field{ {"one"},{"two"},{"three"} }for _,v := range data {v := vgo v.print()}time.Sleep(3 * time.Second)//goroutines print: one, two, three}
在运行这段代码时你认为会看到什么结果?(原因是什么?)
123456789101112131415161718192021222324
package mainimport ("fmt""time")type field struct {name string}func (p *field) print() {fmt.Println(p.name)}func main() {data := []*field{ {"one"},{"two"},{"three"} }for _,v := range data {go v.print()}time.Sleep(3 * time.Second)}
Defer函数调用参数的求值
deferdefer
1234567891011
package mainimport "fmt"func main() {var i int = 1defer fmt.Println("result =>",func() int { return i * 2 }())i++//prints: result => 2 (not ok if you expected 4)}
被Defer的函数调用执行
被defer的调用会在包含的函数的末尾执行,而不是包含代码块的末尾。对于Go新手而言,一个很常犯的错误就是无法区分被defer的代码执行规则和变量作用规则。如果你有一个长时运行的函数,而函数内有一个for循环试图在每次迭代时都defer资源清理调用,那就会出现问题。
123456789101112131415161718192021222324252627282930313233343536373839404142
package mainimport ("fmt""os""path/filepath")func main() {if len(os.Args) != 2 {os.Exit(-1)}start, err := os.Stat(os.Args[1])if err != nil || !start.IsDir(){os.Exit(-1)}var targets []stringfilepath.Walk(os.Args[1], func(fpath string, fi os.FileInfo, err error) error {if err != nil {return err}if !fi.Mode().IsRegular() {return nil}targets = append(targets,fpath)return nil})for _,target := range targets {f, err := os.Open(target)if err != nil {fmt.Println("bad target:",target,"error:",err) //prints error: too many open filesbreak}defer f.Close() //will not be closed at the end of this code block//do something with the file...}}
解决这个问题的一个方法是把代码块写成一个函数。
1234567891011121314151617181920212223242526272829303132333435363738394041424344
package mainimport ("fmt""os""path/filepath")func main() {if len(os.Args) != 2 {os.Exit(-1)}start, err := os.Stat(os.Args[1])if err != nil || !start.IsDir(){os.Exit(-1)}var targets []stringfilepath.Walk(os.Args[1], func(fpath string, fi os.FileInfo, err error) error {if err != nil {return err}if !fi.Mode().IsRegular() {return nil}targets = append(targets,fpath)return nil})for _,target := range targets {func() {f, err := os.Open(target)if err != nil {fmt.Println("bad target:",target,"error:",err)return}defer f.Close() //ok//do something with the file...}()}}
defer
失败的类型断言
失败的类型断言返回断言声明中使用的目标类型的“零值”。这在与隐藏变量混合时,会发生未知情况。
Incorrect:
1234567891011121314
package mainimport "fmt"func main() {var data interface{} = "great"if data, ok := data.(int); ok {fmt.Println("[is an int] value =>",data)} else {fmt.Println("[not an int] value =>",data)//prints: [not an int] value => 0 (not "great")}}
Works:
1234567891011121314
package mainimport "fmt"func main() {var data interface{} = "great"if res, ok := data.(int); ok {fmt.Println("[is an int] value =>",res)} else {fmt.Println("[not an int] value =>",data)//prints: [not an int] value => great (as expected)}}
阻塞的Goroutine和资源泄露
Rob Pike在2012年的Google I/O大会上所做的“Go Concurrency Patterns”的演讲上,说道过几种基础的并发模式。从一组目标中获取第一个结果就是其中之一。
12345678
func First(query string, replicas ...Search) Result {c := make(chan Result)searchReplica := func(i int) { c <- replicas[i](query) }for i := range replicas {go searchReplica(i)}return <-c}
这个函数在每次搜索重复时都会起一个goroutine。每个goroutine把它的搜索结果发送到结果的channel中。结果channel的第一个值被返回。
那其他goroutine的结果会怎样呢?还有那些goroutine自身呢?
First()
为了避免泄露,你需要确保所有的goroutine退出。一个不错的方法是使用一个有足够保存所有缓存结果的channel。
12345678
func First(query string, replicas ...Search) Result {c := make(chan Result,len(replicas))searchReplica := func(i int) { c <- replicas[i](query) }for i := range replicas {go searchReplica(i)}return <-c}
另一个不错的解决方法是使用一个有default情况的select语句和一个保存一个缓存结果的channel。default情况保证了即使当结果channel无法收到消息的情况下,goroutine也不会堵塞。
12345678910111213
func First(query string, replicas ...Search) Result {c := make(chan Result,1)searchReplica := func(i int) {select {case c <- replicas[i](query):default:}}for i := range replicas {go searchReplica(i)}return <-c}
你也可以使用特殊的取消channel来终止workers。
12345678910111213141516
func First(query string, replicas ...Search) Result {c := make(chan Result)done := make(chan struct{})defer close(done)searchReplica := func(i int) {select {case c <- replicas[i](query):case <- done:}}for i := range replicas {go searchReplica(i)}return <-c}
为何在演讲中会包含这些bug?Rob Pike仅仅是不想把演示复杂化。这么作是合理的,但对于Go新手而言,可能会直接使用代码,而不去思考它可能有问题。
高级
使用指针接收方法的值的实例
只要值是可取址的,那在这个值上调用指针接收方法是没问题的。换句话说,在某些情况下,你不需要在有一个接收值的方法版本。
然而并不是所有的变量是可取址的。Map的元素就不是。通过interface引用的变量也不是。
1234567891011121314151617181920212223242526
package mainimport "fmt"type data struct {name string}func (p *data) print() {fmt.Println("name:",p.name)}type printer interface {print()}func main() {d1 := data{"one"}d1.print() //okvar in printer = data{"two"} //errorin.print()m := map[string]data {"x":data{"three"}}m["x"].print() //error}
Compile Errors:
/tmp/sandbox017696142/main.go:21: cannot use data literal (type data) as type printer in assignment: data does not implement printer (print method has pointer receiver)
/tmp/sandbox017696142/main.go:25: cannot call pointer method on m["x"]
/tmp/sandbox017696142/main.go:25: cannot take the address of m["x"]
更新Map的值
如果你有一个struct值的map,你无法更新单个的struct值。
Fails:
12345678910
package maintype data struct {name string}func main() {m := map[string]data {"x":{"one"}}m["x"].name = "two" //error}
Compile Error:
/tmp/sandbox380452744/main.go:9: cannot assign to m["x"].name
这个操作无效是因为map元素是无法取址的。
而让Go新手更加困惑的是slice元素是可以取址的。
12345678910111213
package mainimport "fmt"type data struct {name string}func main() {s := []data ones[0].name = "two" //okfmt.Println(s) //prints: [{two}]}
注意在不久之前,使用编译器之一(gccgo)是可以更新map的元素值的,但这一行为很快就被修复了 :-)它也被认为是Go 1.3的潜在特性。在那时还不是要急需支持的,但依旧在todo list中。
第一个有效的方法是使用一个临时变量。
123456789101112131415
package mainimport "fmt"type data struct {name string}func main() {m := map[string]data {"x":{"one"}}r := m["x"]r.name = "two"m["x"] = rfmt.Printf("%v",m) //prints: map[x:{two}]}
另一个有效的方法是使用指针的map。
12345678910111213
package mainimport "fmt"type data struct {name string}func main() {m := map[string]*data {"x":{"one"}}m["x"].name = "two" //okfmt.Println(m["x"]) //prints: &{two}}
顺便说下,当你运行下面的代码时会发生什么?
12345678910
package maintype data struct {name string}func main() {m := map[string]*data {"x":{"one"}}m["z"].name = "what?" //???}
"nil" Interfaces和"nil" Interfaces的值
这在Go中是第二最常见的技巧,因为interface虽然看起来像指针,但并不是指针。interface变量仅在类型和值为“nil”时才为“nil”。
interface的类型和值会根据用于创建对应interface变量的类型和值的变化而变化。当你检查一个interface变量是否等于“nil”时,这就会导致未预期的行为。
123456789101112131415
package mainimport "fmt"func main() {var data *bytevar in interface{}fmt.Println(data,data == nil) //prints: <nil> truefmt.Println(in,in == nil) //prints: <nil> truein = datafmt.Println(in,in == nil) //prints: <nil> false//'data' is 'nil', but 'in' is not 'nil'}
当你的函数返回interface时,小心这个陷阱。
Incorrect:
1234567891011121314151617181920
package mainimport "fmt"func main() {doit := func(arg int) interface{} {var result *struct{} = nilif(arg > 0) {result = &struct{}{}}return result}if res := doit(-1); res != nil {fmt.Println("good result:",res) //prints: good result: <nil>//'res' is not 'nil', but its value is 'nil'}}
Works:
123456789101112
package mainimport "fmt"func main() {doit := func(arg int) interface{} {var result *struct{} = nilif(arg > 0) {result = &struct{}{}} else {ret
栈和堆变量
new()make()
如果你想知道变量分配的位置,在“go build”或“go run”上传入“-m“ gc标志(即,go run -gcflags -m app.go)。
GOMAXPROCS, 并发, 和并行
GOMAXPROCS
GOMAXPROCSruntime.GOMAXPROCS()GOMAXPROCS
GOMAXPROCSGOMAXPROCS
123456789101112131415
package mainimport ("fmt""runtime")func main() {fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 1fmt.Println(runtime.NumCPU()) //prints: 1 (on play.)runtime.GOMAXPROCS(20)fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 20runtime.GOMAXPROCS(300)fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 256}
读写操作的重排顺序
Go可能会对某些操作进行重新排序,但它能保证在一个goroutine内的所有行为顺序是不变的。然而,它并不保证多goroutine的执行顺序。
1234567891011121314151617181920212223242526272829303132
package mainimport ("runtime""time")var _ = runtime.GOMAXPROCS(3)var a, b intfunc u1() {a = 1b = 2}func u2() {a = 3b = 4}func p() {println(a)println(b)}func main() {go u1()go u2()go p()time.Sleep(1 * time.Second)}
如果你多运行几次上面的代码,你可能会发现a和b变量有多个不同的组合:
1234567891011121314
1234020014
abba
如果你需要在多goroutine内放置读写顺序的变化,你将需要使用channel,或者使用"sync"包构建合适的结构体。
优先调度
有可能会出现这种情况,一个无耻的goroutine阻止其他goroutine运行。当你有一个不让调度器运行的for循环时,这就会发生。
123456789101112131415
package mainimport "fmt"func main() {done := falsego func(){done = true}()for !done {}fmt.Println("done!")}
for循环并不需要是空的。只要它包含了不会触发调度执行的代码,就会发生这种问题。
调度器会在GC、“go”声明、阻塞channel操作、阻塞系统调用和lock操作后运行。它也会在非内联函数调用后执行。
12345678910111213141516
package mainimport "fmt"func main() {done := falsego func(){done = true}()for !done {fmt.Println("not done!") //not inlined}fmt.Println("done!")}
go build -gcflags -m
Goshed()
12345678910111213141516171819
如果你看到了这里,并想留下评论或者想法,你可以在这个Reddit讨论里随意留言。请选中您要保存的内容,粘贴到此文本框package mainimport ("fmt""runtime")func main() {done := falsego func(){done = true}()for !done {runtime.Gosched()}fmt.Println("done!")}