一、基础知识
Context之间的关系,是一颗树形结构,父Context消亡后,子Context会自动消亡。
准确说它是 goroutine 的上下文,包含 goroutine 的运行状态、环境、现场等信息。
context 主要用来在 goroutine 之间传递上下文信息,包括:取消信号、超时时间、截止时间、k-v 等。
main.go 就是这颗树的根Context节点,称之为background.
/ A Context carries a deadline, a cancellation signal, and other values across
// API boundaries.
//
// Context's methods may be called by multiple goroutines simultaneously.
type Context interface {
Deadline() (deadline time.Time, ok bool)
Done() <-chan struct{}
Err() error
Value(key interface{}) interface{}
}
func Background() Context {
return background
}
func WithCancel(parent Context) (ctx Context, cancel CancelFunc)
func WithDeadline(parent Context, d time.Time) (Context, CancelFunc)
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)
func WithValue(parent Context, key, val interface{}) Context
1. Gin - Context 上下文 牛逼的Context
Gin-Context 实现了对request和response的封装,是Gin的核心实现之一,学习使用gin框架就是学习使用Context包的过程。内部封装了request 和response 过程中的数据。
作用:
CONTEXT CREATION reset() , Copy(), HandlerName
FLOW CONTROL Next, IsAbort(), Abort(),AbortWithStatus(code int)
ERROR MANAGEMENT Error(err error)
METADATA MANAGEMENT
Set(key string, value interface{}),Get(key string) (value interface{}, exists bool)
源码结构:
// Context is the most important part of gin. It allows us to pass variables between middleware,
// manage the flow, validate the JSON of a request and render a JSON response for example.
type Context struct {
writermem responseWriter
Request *http.Request
Writer ResponseWriter
Params Params
handlers HandlersChain
index int8
fullPath string
engine *Engine
// This mutex protect Keys map
KeysMutex *sync.RWMutex
// Keys is a key/value pair exclusively for the context of each request.
Keys map[string]interface{}
// Errors is a list of errors attached to all the handlers/middlewares who used this context.
Errors errorMsgs
// Accepted defines a list of manually accepted formats for content negotiation.
Accepted []string
// queryCache use url.ParseQuery cached the param query result from c.Request.URL.Query()
queryCache url.Values
// formCache use url.ParseQuery cached PostForm contains the parsed form data from POST, PATCH,
// or PUT body parameters.
formCache url.Values
}
// Next should be used only inside middleware.
// It executes the pending handlers in the chain inside the calling handler.
// See example in GitHub.
func (c *Context) Next() {
c.index++
for c.index < int8(len(c.handlers)) {
c.handlers[c.index](c)
c.index++
}
}
机制:Pool 里装的对象可以被无通知地被回收.
sync.Poolsync.PoolNewPoolGet()Put()3. RouterGroup
其中handler方法的第一参数必须为Context类型
// RouterGroup is used internally to configure router, a RouterGroup is associated with
// a prefix and an array of handlers (middleware).
type RouterGroup struct {
Handlers HandlersChain
basePath string
engine *Engine
root bool
}
添加中间件本质上注册公用 handler
// Use adds middleware to the group, see example code in GitHub.
func (group *RouterGroup) Use(middleware ...HandlerFunc) IRoutes {
group.Handlers = append(group.Handlers, middleware...)
return group.returnObj()
}
// Group creates a new router group. You should add all the routes that have common middlewares or the same path prefix.
// For example, all the routes that use a common middleware for authorization could be grouped.
func (group *RouterGroup) Group(relativePath string, handlers ...HandlerFunc) *RouterGroup {
return &RouterGroup{
Handlers: group.combineHandlers(handlers),
basePath: group.calculateAbsolutePath(relativePath),
engine: group.engine,
}
}
// POST is a shortcut for router.Handle("POST", path, handle).
func (group *RouterGroup) POST(relativePath string, handlers ...HandlerFunc) IRoutes {
return group.handle(http.MethodPost, relativePath, handlers)
}
// GET is a shortcut for router.Handle("GET", path, handle).
func (group *RouterGroup) GET(relativePath string, handlers ...HandlerFunc) IRoutes {
return group.handle(http.MethodGet, relativePath, handlers)
}
4. Engine
Engine代表的就是gin框架本身实例 ;
Engine实现了一个ServeHTTP的方法, 是 Gin 框架核心中的核心:
// Engine is the framework's instance, it contains the muxer, middleware and configuration settings.
// Create an instance of Engine, by using New() or Default()
type Engine struct {
RouterGroup
pool sync.Pool
trees methodTrees
...
}
// ServeHTTP conforms to the http.Handler interface.
func (engine *Engine) ServeHTTP(w http.ResponseWriter, req *http.Request) {
c := engine.pool.Get().(*Context)
c.writermem.reset(w)
c.Request = req
c.reset()
engine.handleHTTPRequest(c) // 处理请求
engine.pool.Put(c)
}
Engine 与 RouterGroup 之间存在双向指针,实现了类似友元的关系,路由的添加和注册可以直接使用Engine的实例进行添加注册,实际的实现仍然是RouterGroup内进行添加和注册。
二、框架启动过程
1. New 一个Engine实例
app := gin.Default()
2. 注册添加路由、中间件
你可能会疑惑,为什么这里的路由处理函数要接受一个 gin.Context 类型的参数,是在何时传入的?
Engine结构体本身发挥的核心功能就是路由处理。
app.GET("/ping", func(c *gin.Context) {
c.JSON(200, gin.H{
"message": "pong",
})
})
3. 启动Gin框架
Run 本质就是将 注册的路由信息engine 绑定到一个 http.Server,然后开始开始监听并处理请求
app.Run()
func (engine *Engine) Run(addr ...string) (err error) {
defer func() { debugPrintError(err) }()
address := resolveAddress(addr)
debugPrint("Listening and serving HTTP on %s\n", address)
err = http.ListenAndServe(address, engine)
return
}
进入到 golang net/http包 (以下不属于gin框架) ,Hanlder 是一个实现了ServeHTTP方法的类型
func ListenAndServe(addr string, handler Handler) error {
server := &Server{Addr: addr, Handler: handler}
return server.ListenAndServe()
}
func (srv *Server) ListenAndServe() error {
if srv.shuttingDown() {
return ErrServerClosed
}
addr := srv.Addr
if addr == "" {
addr = ":http"
}
ln, err := net.Listen("tcp", addr)
if err != nil {
return err
}
return srv.Serve(ln)
}
func (srv *Server) Serve(l net.Listener) error {
if fn := testHookServerServe; fn != nil {
fn(srv, l) // call hook with unwrapped listener
}
origListener := l
l = &onceCloseListener{Listener: l}
defer l.Close()
if err := srv.setupHTTP2_Serve(); err != nil {
return err
}
if !srv.trackListener(&l, true) {
return ErrServerClosed
}
defer srv.trackListener(&l, false)
baseCtx := context.Background()
if srv.BaseContext != nil {
baseCtx = srv.BaseContext(origListener)
if baseCtx == nil {
panic("BaseContext returned a nil context")
}
}
var tempDelay time.Duration // how long to sleep on accept failure
ctx := context.WithValue(baseCtx, ServerContextKey, srv)
for {
rw, err := l.Accept()
if err != nil {
select {
case <-srv.getDoneChan():
return ErrServerClosed
default:
}
if ne, ok := err.(net.Error); ok && ne.Temporary() {
if tempDelay == 0 {
tempDelay = 5 * time.Millisecond
} else {
tempDelay *= 2
}
if max := 1 * time.Second; tempDelay > max {
tempDelay = max
}
srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay)
time.Sleep(tempDelay)
continue
}
return err
}
connCtx := ctx
if cc := srv.ConnContext; cc != nil {
connCtx = cc(connCtx, rw) // 将此上下文,与连接 rw绑定
if connCtx == nil {
panic("ConnContext returned nil")
}
}
tempDelay = 0
c := srv.newConn(rw)
c.setState(c.rwc, StateNew, runHooks) // before Serve can return
go c.serve(connCtx) // 处理新的连接
}
}
Background() 为 后台主上下文,可以理解为上下文的根节点。
三、API调用主过程
当监听到请求时,gin框架就会衍生一个Context,为它添加上请求相关参数。开一个go程进行处理。
1. net\http 创建连接,握手
// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
c.remoteAddr = c.rwc.RemoteAddr().String()
ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
defer func() {
if err := recover(); err != nil && err != ErrAbortHandler {
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
}
if !c.hijacked() {
c.close()
c.setState(c.rwc, StateClosed, runHooks)
}
}()
if tlsConn, ok := c.rwc.(*tls.Conn); ok {
if d := c.server.ReadTimeout; d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
}
if d := c.server.WriteTimeout; d != 0 {
c.rwc.SetWriteDeadline(time.Now().Add(d))
}
if err := tlsConn.Handshake(); err != nil {
// If the handshake failed due to the client not speaking
// TLS, assume they're speaking plaintext HTTP and write a
// 400 response on the TLS conn's underlying net.Conn.
if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) {
io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request\r\n\r\nClient sent an HTTP request to an HTTPS server.\n")
re.Conn.Close()
return
}
c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
return
}
c.tlsState = new(tls.ConnectionState)
*c.tlsState = tlsConn.ConnectionState()
if proto := c.tlsState.NegotiatedProtocol; validNextProto(proto) {
if fn := c.server.TLSNextProto[proto]; fn != nil {
h := initALPNRequest{ctx, tlsConn, serverHandler{c.server}}
// Mark freshly created HTTP/2 as active and prevent any server state hooks
// from being run on these connections. This prevents closeIdleConns from
// closing such connections. See issue https://golang.org/issue/39776.
c.setState(c.rwc, StateActive, skipHooks)
fn(c.server, tlsConn, h)
}
return
}
}
// HTTP/1.x from here on.
ctx, cancelCtx := context.WithCancel(ctx)
c.cancelCtx = cancelCtx
defer cancelCtx()
c.r = &connReader{conn: c}
c.bufr = newBufioReader(c.r)
c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
for {
w, err := c.readRequest(ctx)
if c.r.remain != c.server.initialReadLimitSize() {
// If we read any bytes off the wire, we're active.
c.setState(c.rwc, StateActive, runHooks)
}
if err != nil {
const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
switch {
case err == errTooLarge:
// Their HTTP client may or may not be
// able to read this if we're
// responding to them and hanging up
// while they're still writing their
// request. Undefined behavior.
const publicErr = "431 Request Header Fields Too Large"
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
c.closeWriteAndWait()
return
case isUnsupportedTEError(err):
// Respond as per RFC 7230 Section 3.3.1 which says,
// A server that receives a request message with a
// transfer coding it does not understand SHOULD
// respond with 501 (Unimplemented).
code := StatusNotImplemented
// We purposefully aren't echoing back the transfer-encoding's value,
// so as to mitigate the risk of cross side scripting by an attacker.
fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders)
return
case isCommonNetReadError(err):
return // don't reply
default:
if v, ok := err.(statusError); ok {
fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text)
return
}
publicErr := "400 Bad Request"
fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
return
}
}
// Expect 100 Continue support
req := w.req
if req.expectsContinue() {
if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
// Wrap the Body reader with one that replies on the connection
req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
w.canWriteContinue.setTrue()
}
} else if req.Header.get("Expect") != "" {
w.sendExpectationFailed()
return
}
c.curReq.Store(w)
if requestBodyRemains(req.Body) {
registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
} else {
w.conn.r.startBackgroundRead()
}
// HTTP cannot have multiple simultaneous active requests.[*]
// Until the server replies to this request, it can't read another,
// so we might as well run the handler in this goroutine.
// [*] Not strictly true: HTTP pipelining. We could let them all process
// in parallel even if their responses need to be serialized.
// But we're not going to implement HTTP pipelining because it
// was never deployed in the wild and the answer is HTTP/2.
serverHandler{c.server}.ServeHTTP(w, w.req)
w.cancelCtx()
if c.hijacked() {
return
}
w.finishRequest()
if !w.shouldReuseConnection() {
if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
c.closeWriteAndWait()
}
return
}
c.setState(c.rwc, StateIdle, runHooks)
c.curReq.Store((*response)(nil))
if !w.conn.server.doKeepAlives() {
// We're in shutdown mode. We might've replied
// to the user without "Connection: close" and
// they might think they can send another
// request, but such is life with HTTP/1.1.
return
}
if d := c.server.idleTimeout(); d != 0 {
c.rwc.SetReadDeadline(time.Now().Add(d))
if _, err := c.bufr.Peek(4); err != nil {
return
}
}
c.rwc.SetReadDeadline(time.Time{})
}
}
2. gin 框架处理请求核心:ServeHTTP
整个gin框架做的事情,基本上都在这个函数里了
func (engine *Engine) ServeHTTP(w http.ResponseWriter, req *http.Request) {
c := engine.pool.Get().(*Context)
c.writermem.reset(w)
c.Request = req
c.reset()
engine.handleHTTPRequest(c)
engine.pool.Put(c)
}
3. gin框架进行路由解析
func (engine *Engine) handleHTTPRequest(c *Context) {
httpMethod := c.Request.Method
rPath := c.Request.URL.Path
unescape := false
if engine.UseRawPath && len(c.Request.URL.RawPath) > 0 {
rPath = c.Request.URL.RawPath
unescape = engine.UnescapePathValues
}
if engine.RemoveExtraSlash {
rPath = cleanPath(rPath)
}
// Find root of the tree for the given HTTP method
t := engine.trees
for i, tl := 0, len(t); i < tl; i++ {
if t[i].method != httpMethod {
continue
}
root := t[i].root
// Find route in tree
value := root.getValue(rPath, c.Params, unescape)
if value.handlers != nil {
c.handlers = value.handlers
c.Params = value.params
c.fullPath = value.fullPath
c.Next()
c.writermem.WriteHeaderNow()
return
}
if httpMethod != "CONNECT" && rPath != "/" {
if value.tsr && engine.RedirectTrailingSlash {
redirectTrailingSlash(c)
return
}
if engine.RedirectFixedPath && redirectFixedPath(c, root, engine.RedirectFixedPath) {
return
}
}
break
}
if engine.HandleMethodNotAllowed {
for _, tree := range engine.trees {
if tree.method == httpMethod {
continue
}
if value := tree.root.getValue(rPath, nil, unescape); value.handlers != nil {
c.handlers = engine.allNoMethod
serveError(c, http.StatusMethodNotAllowed, default405Body)
return
}
}
}
c.handlers = engine.allNoRoute
serveError(c, http.StatusNotFound, default404Body)
}4. Context 内 执行API Call 即路由handlers
handlers包括中间件,注册的路由handler函数
这里就说明了为什么路由handler的参数必须是Context类型,注册路由处理函数的context就是在这里传入的。
包括中间件,也必须接收一个Context类型的参数
func (c *Context) Next() {
c.index++
for c.index < int8(len(c.handlers)) {
c.handlers[c.index](c)
c.index++
}
}
5. 执行用户定义的处理函数
业务开发的本质是解析Context,处理其中的参数
学习使用gin框架就是学习使用Context包的过程。
四 、总结
文档资料
官方文档:https://gin-gonic.com/docs/
源码地址:https://github.com/gin-gonic/gin
中文教程:https://learnku.com/docs/gin-gonic/2019
功能特性
高性能:基于RadixTree的路由策略,没有使用反射,占用内存也小;上下文Context使用了sync.pool对象池
中间件:提供简单的中间件注册来实现扩展性,请求被一串链式中间件处理后才应答
路由分组:通过路由group,提供方便和全面的http路由组织
参数获取:提供了包括GET/POST/BIND等便捷的获取参数方法
五、QA
1. 返回数据是如何读取的?
// WriteJSON marshals the given interface object and writes it with custom ContentType.
func WriteJSON(w http.ResponseWriter, obj interface{}) error {
writeContentType(w, jsonContentType)
jsonBytes, err := json.Marshal(obj)
if err != nil {
return err
}
_, err = w.Write(jsonBytes)
return err
}
2. gin框架为什么不把Context定义为全局变量?
“足球模式”
3. 如何脱离gin框架,手写一个极简http服务器,并完成一个ping接口?
A. 定义一个结构体,实现ServeHTTP方法
ServeHTTP(w http.ResponseWriter, r *http.Request)B. 将结构体作为参数传入http.ListenAndServe
六、附录
1. 精简版的gin框架
package main
import (
"fmt"
"net/http"
"log"
)
type testEngine struct {
}
## 精简版的 gin框架实现
func (t testEngine) ServeHTTP(w http.ResponseWriter, r *http.Request) {
r.ParseForm()
fmt.Println(r.Form)
fmt.Println("path", r.URL.Path)
// 路由分发
if r.URL.Path == "/ping" {
fmt.Fprintf(w, "pong!") // 这个写入到 w 的是输出到客户端的
} else {
fmt.Fprintf(w, "404 not Found!")
}
}
func main() {
t := &testEngine{}
err := http.ListenAndServe(":9090", t)
if err != nil {
log.Fatal("ListenAndServe: ", err)
}
}
2. 推荐阅读
深入理解go channel
深入理解GMP 模型
三色标记GC
Go并发编程
内存分配
golang 各种轮子,设计模式的实现