这篇文章分享给大家的内容是关于在C语言中GC触发场景有哪些,为何需要GC,本文介绍得很详细,内容很有参考价值,希望可以帮到有需要的小伙伴,接下来就让小编带领大家一起了解看看吧。

在早期经常遭到唾弃的就是在垃圾回收(下称:GC)机制中 STW(Stop-The-World)的时间过长。那么这个时候,我们又会好奇一点,作为 STW 的起始,Go 语言中什么时候才会触发 GC 呢?

1、什么是 GC

在计算机科学中,垃圾回收(GC)是一种自动管理内存的机制,垃圾回收器会去尝试回收程序不再使用的对象及其占用的内存。

John McCarthy Lisp 

2、为什么要 GC

手动管理内存挺麻烦,管错或者管漏内存也很糟糕,将会直接导致程序不稳定(持续泄露)甚至直接崩溃。

3、GC 触发场景

GC 触发的场景主要分为两大类,分别是:

 runtime.GC 

3.1系统触发

 src/runtime/mgc.go 
const ( 
 gcTriggerHeap gcTriggerKind = iota 
 gcTriggerTime 
 gcTriggerCycle 
) 


gcTriggerHeap:gcTriggerTime:runtime.forcegcperiod gcTriggerCycle:
 runtime.GC 

3.2手动触发

runtime.GC 

但我们要思考的是,一般我们在什么业务场景中,要涉及到手动干涉 GC,强制触发他呢?

debug 

3.3 基本流程

runtime.GC 

核心代码如下:

func GC() { 
 n := atomic.Load(&work.cycles) 
 gcWaitOnMark(n) 
 
 gcStart(gcTrigger{kind: gcTriggerCycle, n: n + 1}) 
   
 gcWaitOnMark(n + 1) 
 
 for atomic.Load(&work.cycles) == n+1 && sweepone() != ^uintptr(0) { 
  sweep.nbgsweep++ 
  Gosched() 
 } 
   
 for atomic.Load(&work.cycles) == n+1 && atomic.Load(&mheap_.sweepers) != 0 { 
  Gosched() 
 } 
   
 mp := acquirem() 
 cycle := atomic.Load(&work.cycles) 
 if cycle == n+1 || (gcphase == _GCmark && cycle == n+2) { 
  mProf_PostSweep() 
 } 
 releasem(mp) 
} 

 gcWaitOnMark 
gcStart 
gcWaitOnMark 
sweepone Gosched 

在本轮 GC 已经基本完成后,会调用 mProf_PostSweep 方法。以此记录最后一次标记终止时的堆配置文件快照。

结束,释放 M。

3.4 在哪触发

看完 GC 的基本流程后,我们有了一个基本的了解。但可能又有小伙伴有疑惑了?

本文的标题是 “GC 什么时候会触发 GC”,虽然我们前面知道了触发的时机。但是....Go 是哪里实现的触发的机制,似乎在流程中完全没有看到?

4、监控线程

(runtime)goroutine

代码如下:

func init() { 
 go forcegchelper() 
} 
 
func forcegchelper() { 
 forcegc.g = getg() 
 lockInit(&forcegc.lock, lockRankForcegc) 
 for { 
  lock(&forcegc.lock) 
  if forcegc.idle != 0 { 
   throw("forcegc: phase error") 
  } 
  atomic.Store(&forcegc.idle, 1) 
  goparkunlock(&forcegc.lock, waitReasonForceGCIdle, traceEvGoBlock, 1) 
    // this goroutine is explicitly resumed by sysmon 
  if debug.gctrace > 0 { 
   println("GC forced") 
  } 
 
  gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()}) 
 } 
} 

forcegchelper goparkunlock goroutine 
sysmon 
func sysmon() { 
 ... 
 for { 
  ... 
  // check if we need to force a GC 
  if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 { 
   lock(&forcegc.lock) 
   forcegc.idle = 0 
   var list gList 
   list.push(forcegc.g) 
   injectglist(&list) 
   unlock(&forcegc.lock) 
  } 
  if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now { 
   lasttrace = now 
   schedtrace(debug.scheddetail > 0) 
  } 
  unlock(&sched.sysmonlock) 
 } 
} 

 gcTriggerTime now 
forcegc.g forcegchelper 

5、堆内存申请

在了解定时触发的机制后,另外一个场景就是分配的堆空间的时候,那么我们要看的地方就非常明确了。

mallocgc 
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { 
 shouldhelpgc := false 
 ... 
 if size <= maxSmallSize { 
  if noscan && size < maxTinySize { 
   ... 
   // Allocate a new maxTinySize block. 
   span = c.alloc[tinySpanClass] 
   v := nextFreeFast(span) 
   if v == 0 { 
    v, span, shouldhelpgc = c.nextFree(tinySpanClass) 
   } 
   ... 
   spc := makeSpanClass(sizeclass, noscan) 
   span = c.alloc[spc] 
   v := nextFreeFast(span) 
   if v == 0 { 
    v, span, shouldhelpgc = c.nextFree(spc) 
   } 
   ... 
  } 
 } else { 
  shouldhelpgc = true 
  span = c.allocLarge(size, needzero, noscan) 
  ... 
 } 
 
 if shouldhelpgc { 
  if t := (gcTrigger{kind: gcTriggerHeap}); t.test() { 
   gcStart(t) 
  } 
 } 
 
 return x 
} 


nextFree 

大对象:如果申请大于 32k 以上的大对象时,可能会触发 GC 行为。

总结
在这篇文章中,我们介绍了 Go 语言触发 GC 的两大类场景,并分别基于大类中的细分场景进行了一一说明。


以上就是关于“在C语言中GC触发场景有哪些,为何需要GC”的介绍了,感谢各位的阅读,希望文本对大家有所帮助。如果想要了解更多知识,欢迎关注群英网络,小编每天都会为大家更新不同的知识。

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。