好的,以下是用 Golang 编写单纯算法的示例代码: ``` package main import "fmt" func main() { points := [][]float64{{0, 0}, {1, 0}, {0, 1}, {1, 1}, {0.5, 0.5}} simplex := Simplex(points) fmt.Println(simplex) } func Simplex(points [][]float64) [][]float64 { n := len(points[0]) simplex := make([][]float64, n+1) for i := range simplex { simplex[i] = make([]float64, n) } for i := range simplex[0] { simplex[0][i] = -points[len(points)-1][i] } for i, p := range points { for j := range p { simplex[i+1][j] = p[j] } } for { c := findNegative(simplex[0]) if c < 0 { break } r := findRatio(simplex, c) if r < 0 { return nil } pivot(simplex, r, c) } return simplex } func findNegative(row []float64) int { for i, v := range row { if v < 0 { return i } } return -1 } func findRatio(simplex [][]float64, c int) int { n := len(simplex) r := -1 for i := 1; i < n; i++ { if simplex[i][c] <= 0 { continue } if r == -1 { r = i continue } if simplex[i][n-1]/simplex[i][c] < simplex[r][n-1]/simplex[r][c] { r = i } } return r } func pivot(simplex [][]float64, r, c int) { n := len(simplex) pivot := simplex[r][c] for i := range simplex[r] { simplex[r][i] /= pivot } for i := range simplex { if i == r { continue } factor := simplex[i][c] for j := range simplex[i] { simplex[i][j] -= factor * simplex[r][j] } } } ``` 这个算法实现了单纯算法,可以用来求解线规划问题。在这个示例代码中,我们使用了一个包含 5 个点的简单例子来测试算法的正确