1. 加载模型
1.1 使用pmml加载模型
from pypmml import Model
model = Model.fromFile("lightgbm.pmml")
model.predict(X_test)
1.2 使用joblib加载模型
from sklearn.externals import joblib
model = joblib.load("model_{}.m".format(str(date)))
2. 保存模型
2.2 使用joblib保存模型
import joblib
joblib.dump(model, "model_{}.m".format(str(date)))
3. 字典数据的加载与保存
3.1 存储字典
直接以pickle格式存储字典,每次使用前加载该文件即可。
channel_cat2num_dict = {}
channel_list = df['source_channel'].unique()
for idx, item in enumerate(channel_list):
channel_cat2num_dict[item] = idx
joblib.dump(channel_cat2num_dict, '../../models/source_channel_cat2num.pkl')
3.2 加载字典
channel_dict = joblib.load('../../models/source_channel.pkl')
test['source_channel'] = test['source_channel'].map(channel_dict)
或
with open('aa.pkl', 'rb') as f:
channel_dict = pickle.load(f)