1. 算法介绍
希尔排序(Shell Sort)递减增量排序算法(diminishing increment sort)插入排序希尔排序

算法的主要步骤如下:
步长
gap = 4

gap = 2

gap = 1

步长
2.1 算法1
步长n / 2
def shell_sort(L):
'''希尔排序,升序'''
n = len(L)
if n <= 1:
return
gap = n // 2 # 初始步长
while gap > 0: # 最后一次步长为1(即普通的插入排序),然后整个希尔排序结束
# 想像成,以步长 gap 将原始序列划分成 gap 个待排序的序列,对每个序列使用普通的插入排序进行排序
# 序列1: [L[0], L[gap], L[2*gap]...]
# 序列2: [L[1], L[1+gap], L[1 + 2*gap]...]
# 序列3: [L[2], L[2+gap], L[2 + 2*gap]...]
# 请查看插入排序算法 https://github.com/wangy8961/python3-algorithms/blob/master/4.%20%E6%8F%92%E5%85%A5%E6%8E%92%E5%BA%8F%20-%20Insertion%20Sort/3_best_insertion_sort_asc.py
# 助记:普通的插入排序算法中步长是 1 ,把插入排序中的步长 1 替换为 gap
for i in range(gap, n): # "未排序序列" 的第1个元素分别是L[gap], L[1+gap], L[2+gap] ... ,所以变量 i 表示的下标是 gap, 1+gap, 2+gap ...
temp = L[i]
j = i
# j >= gap是因为后续j[j-gap],否则下标越界
while j >= gap and temp < L[j-gap]:
L[j] = L[j-gap]
j -= gap
L[j] = temp
gap = gap // 2 # 得到新的步长
if __name__ == '__main__':
L1 = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print('Before: ', L1)
shell_sort(L1)
print('After: ', L1)
# Output:
# Before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
# After: [17, 20, 26, 31, 44, 54, 55, 77, 93]
压力测试:
from timeit import timeit
def shell_sort():
# import random
# gen = (random.randint(1, 100) for i in range(100)) # 产生100个 1-99 范围内的随机整数
# L = list(gen)
L = [96, 2, 65, 23, 47, 58, 8, 48, 69, 92, 34, 83, 93, 47, 45, 55, 95, 15, 92, 24, 64, 19, 29, 55, 35, 48, 39, 29, 63, 94, 99, 38, 50, 10, 10, 93, 74, 27, 74, 44, 29, 81, 85, 86, 74, 30, 50, 50, 12, 12, 38, 75, 41, 87, 80,