在《切片传递的隐藏危机》一文中,小菜刀有简单地提及到切片扩容的问题。在读者讨论群中,有人举了以下例子,想得到一个合理的回答。

package main

func main() {
    s := []int{1,2}
    s = append(s, 3,4,5)
    println(cap(s))
}

// output: 6
append
appendbuiltinbuiltin.go
// The append built-in function appends elements to the end of a slice. If
// it has sufficient capacity, the destination is resliced to accommodate the
// new elements. If it does not, a new underlying array will be allocated.
// Append returns the updated slice. It is therefore necessary to store the
// result of append, often in the variable holding the slice itself:
//    slice = append(slice, elem1, elem2)
//    slice = append(slice, anotherSlice...)
// As a special case, it is legal to append a string to a byte slice, like this:
//    slice = append([]byte("hello "), "world"...)
func append(slice []Type, elems ...Type) []Type

append 会追加一个或多个数据至 slice 中,这些数据会存储至 slice 的底层数组。其中,数组长度是固定的,如果数组的剩余空间足以容纳追加的数据,则可以正常地将数据存入该数组。一旦追加数据后总长度超过原数组长度,原数组就无法满足存储追加数据的要求。此时会怎么处理呢?

同时我们发现,该文件中仅仅定义了函数签名,并没有包含函数实现的任何代码。这里我们不免好奇,append究竟是如何实现的呢?

编译过程

为了回答上述问题,我们不妨从编译入手。Go编译可分为四个阶段:词法与语法分析、类型检查与抽象语法树(AST)转换、中间代码生成和生成最后的机器码。

src/cmd/compile/internal/gc/typecheck.go
func typecheck1(n *Node, top int) (res *Node) {
    ...
    switch n.Op {
    case OAPPEND:
    ...
}
src/cmd/compile/internal/gc/walk.go
func walkexpr(n *Node, init *Nodes) *Node {
    ...
    case OAPPEND:
            // x = append(...)
            r := n.Right
            if r.Type.Elem().NotInHeap() {
                yyerror("%v can't be allocated in Go; it is incomplete (or unallocatable)", r.Type.Elem())
            }
            switch {
            case isAppendOfMake(r):
                // x = append(y, make([]T, y)...)
                r = extendslice(r, init)
            case r.IsDDD():
                r = appendslice(r, init) // also works for append(slice, string).
            default:
                r = walkappend(r, init, n)
            }
    ...
}  
src/cmd/compile/internal/gc/ssa.go
// append converts an OAPPEND node to SSA.
// If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
// adds it to s, and returns the Value.
// If inplace is true, it writes the result of the OAPPEND expression n
// back to the slice being appended to, and returns nil.
// inplace MUST be set to false if the slice can be SSA'd.
func (s *state) append(n *Node, inplace bool) *ssa.Value {
    ...
}
state.appendinplacestate.appendappend(s, e1, e2, e3)
    // If inplace is false, process as expression "append(s, e1, e2, e3)": 
   ptr, len, cap := s
     newlen := len + 3
     if newlen > cap {
         ptr, len, cap = growslice(s, newlen)
         newlen = len + 3 // recalculate to avoid a spill
     }
     // with write barriers, if needed:
     *(ptr+len) = e1
     *(ptr+len+1) = e2
     *(ptr+len+2) = e3
     return makeslice(ptr, newlen, cap)
slice = append(slice, 1, 2, 3)
    // If inplace is true, process as statement "s = append(s, e1, e2, e3)":
    
     a := &s
     ptr, len, cap := s
     newlen := len + 3
     if uint(newlen) > uint(cap) {
        newptr, len, newcap = growslice(ptr, len, cap, newlen)
        vardef(a)       // if necessary, advise liveness we are writing a new a
        *a.cap = newcap // write before ptr to avoid a spill
        *a.ptr = newptr // with write barrier
     }
     newlen = len + 3 // recalculate to avoid a spill
     *a.len = newlen
     // with write barriers, if needed:
     *(ptr+len) = e1
     *(ptr+len+1) = e2
     *(ptr+len+2) = e3
inpalceruntime.growslice
slice=append(slice,1)

情况1,切片的底层数组还有可容纳追加元素的空间。

情况2,切片的底层数组已无可容纳追加元素的空间,需调用扩容函数,进行扩容。

扩容函数

growslicecap
growslice
  1. 初步确定切片容量
func growslice(et *_type, old slice, cap int) slice {
  ...
  newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
        newcap = cap
    } else {
        if old.len < 1024 {
            newcap = doublecap
        } else {
            // Check 0 < newcap to detect overflow
            // and prevent an infinite loop.
            for 0 < newcap && newcap < cap {
                newcap += newcap / 4
            }
            // Set newcap to the requested cap when
            // the newcap calculation overflowed.
            if newcap <= 0 {
                newcap = cap
            }
        }
    }
  ...
}  
capdoublecapnewcap
  1. 计算容量所需内存大小
    var overflow bool    var lenmem, newlenmem, capmem uintptr    switch {    case et.size == 1:        lenmem = uintptr(old.len)        newlenmem = uintptr(cap)        capmem = roundupsize(uintptr(newcap))        overflow = uintptr(newcap) > maxAlloc        newcap = int(capmem)    case et.size == sys.PtrSize:        lenmem = uintptr(old.len) * sys.PtrSize        newlenmem = uintptr(cap) * sys.PtrSize        capmem = roundupsize(uintptr(newcap) * sys.PtrSize)        overflow = uintptr(newcap) > maxAlloc/sys.PtrSize        newcap = int(capmem / sys.PtrSize)    case isPowerOfTwo(et.size):        var shift uintptr        if sys.PtrSize == 8 {            // Mask shift for better code generation.            shift = uintptr(sys.Ctz64(uint64(et.size))) & 63        } else {            shift = uintptr(sys.Ctz32(uint32(et.size))) & 31        }        lenmem = uintptr(old.len) << shift        newlenmem = uintptr(cap) << shift        capmem = roundupsize(uintptr(newcap) << shift)        overflow = uintptr(newcap) > (maxAlloc >> shift)        newcap = int(capmem >> shift)    default:        lenmem = uintptr(old.len) * et.size        newlenmem = uintptr(cap) * et.size        capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))        capmem = roundupsize(capmem)        newcap = int(capmem / et.size)    }

在该环节,通过判断切片元素的字节大小是否为1,系统指针大小(32位为4,64位为8)或2的倍数,进入相应所需内存大小的计算逻辑。

roundupsizesizemallocgc
func roundupsize(size uintptr) uintptr {    if size < _MaxSmallSize {        if size <= smallSizeMax-8 {            return uintptr(class_to_size[size_to_class8[divRoundUp(size, smallSizeDiv)]])        } else {            return uintptr(class_to_size[size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)]])        }    }    // Go的内存管理虚拟地址页大小为 8k(_PageSize)  // 当size的大小即将溢出时,就不采用向上取整的做法,直接用当前期望size值。    if size+_PageSize < size {        return size    }    return alignUp(size, _PageSize)}
<_MaxSmallSizedivRoundUpclass_to_sizesize_to_class8size_to_class128
// _NumSizeClasses = 67 代表67种特定大小的对象类型var class_to_size = [_NumSizeClasses]uint16{0, 8, 16, 32, 48, 64, 80, 96, 112,...}
alignUpsize_PageSize
  1. 内存分配
    if overflow || capmem > maxAlloc {        panic(errorString("growslice: cap out of range"))    }    var p unsafe.Pointer    if et.ptrdata == 0 {        p = mallocgc(capmem, nil, false)        memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)    } else {        p = mallocgc(capmem, et, true)        if lenmem > 0 && writeBarrier.enabled {            bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem-et.size+et.ptrdata)        }    }    memmove(p, old.array, lenmem)    return slice{p, old.len, newcap}
panic
mallocgccapmemmemclrNoHeapPointersbulkBarrierPreWriteSrcOnly
memmovep
growslicelen =3cap=3slice=append(slice,1)

growslicelen

总结

这里回到文章开头中的例子

package mainfunc main() {    s := []int{1,2}    s = append(s, 3,4,5)    println(cap(s))}
sappendgrowslicecapdoublecapdoublecapcapnewcap=5intsys.PtrSizeroundupsizecapmemnewcap
append

在扩容的容量确定上,相对比较复杂,它与CPU位数、元素大小、是否包含指针、追加个数等都有关系。当我们看完扩容源码逻辑后,发现去纠结它的扩容确切值并没什么必要。

在实际使用中,如果能够确定切片的容量范围,比较合适的做法是:切片初始化时就分配足够的容量空间,在append追加操作时,就不用再考虑扩容带来的性能损耗问题。

func BenchmarkAppendFixCap(b *testing.B) {    for i := 0; i < b.N; i++ {        a := make([]int, 0, 1000)        for i := 0; i < 1000; i++ {            a = append(a, i)        }    }}func BenchmarkAppend(b *testing.B) {    for i := 0; i < b.N; i++ {        a := make([]int, 0)        for i := 0; i < 1000; i++ {            a = append(a, i)        }    }}

它们的压测结果如下,孰优孰劣,一目了然。

 $ go test -bench=. -benchmem

BenchmarkAppendFixCap-8          1953373               617 ns/op               0 B/op          0 allocs/op
BenchmarkAppend-8                 426882              2832 ns/op           16376 B/op         11 allocs/op