摘要
Golang 提供了简洁的 go 关键字来让开发者更容易的进行并发编程,同时也提供了 WaitGroup 对象来辅助并发控制。今天我们就来分析下 WaitGroup 的使用方法,顺便瞧一瞧它的底层源码。
WaitGroup 的使用场景和方法
当我们有很多任务要同时进行时,如果并不需要关心各个任务的执行进度,那直接使用 go 关键字即可。
如果我们需要关心所有任务完成后才能往下运行时,则需要 WaitGroup 来阻塞等待这些并发任务了。
WaitGroup 如同它的字面意思,就是等待一组 goroutine 运行完成,主要有三个方法组成:
- Add(delta int) :添加任务数
- Wait():阻塞等待所有任务的完成
- Done():完成任务
下面是它们的具体用法,具体的作用都在注释上:
WaitGroup 源码分析
上面 WaitGroup 的使用很简单,接下来我们到 src/sync/waitgroup.go 里分析下它的源码。首先,是 WaitGroup 的结构体:
noCopy
其中,noCopy 表示 WaitGroup 是不可复制的。那么什么叫不可复制呢?
举个例子,当我们对函数参数定义了这个不可复制的类型时,开发者只能通过指针来传递函数参数。而规定使用指针传递又有什么好处呢?
好处在于如果有多个函数都定义了这个不可复制的参数时,那么这多个函数参数就可以共用同一个指针变量,来同步执行结果。而 WaitGroup 就是需要这样的约束规定。
state1 字段
接下来我们来看看 WaitGroup 的 state1 字段。state1 是一个包含了 counter 总数、 waiter 等待数、sema 信号量的 uint32 数组。
每当有 goroutine 调用了 Wait() 方法阻塞等待时,就会对 waiter 数量 + 1,然后等待信号量的唤起通知。
当我们调用 Add() 方法时,就会对 state1 的 counter 数量 + 1。
当调用 Done() 方法时就会对 counter 数量 -1。
直到 counter == 0 时就可以通过信号量唤起对应 waiter 数量的 goroutine 了,也就是唤起刚刚阻塞等待的 goroutine 们。
关于信号量的解释,可以参考下 里的相关介绍:
PV 原语解释:
通过操作信号量 S 来处理进程间的同步与互斥的问题。
S>0:表示有 S 个资源可用;S=0 表示无资源可用;S<0 绝对值表示等待队列或链表中的进程个数。信号量 S 的初值应大于等于 0。
P 原语:表示申请一个资源,对 S 原子性的减 1,若 减 1 后仍 S>=0,则该进程继续执行;若 减 1 后 S<0,表示已无资源可用,需要将自己阻塞起来,放到等待队列上。
V 原语:表示释放一个资源,对 S 原子性的加 1;若 加 1 后 S>0,则该进程继续执行;若 加 1 后 S<=0,表示等待队列上有等待进程,需要将第一个等待的进程唤醒。
操作系统进程
源码解释
最后,我们来深入 WaitGroup 的三个方法,进行源码分析。大家感兴趣的可以继续往下看,主要是对源码的分析注释。
Add(delta int) 方法
Done 方法
Wait 方法
从这几个方法的源码,我们可以看出,Go 并没有使用 mutex 等锁去做字段值修改,而是采用了 atomic 原子操作来进行修改的。这是在底层硬件上支持的,所以性能更好。
总结
WaitGroup 比较简单,就是一些计数值的维护和 goroutine 的阻塞唤起。它的运用也简单,Add、Done、Wait 这三个方法经常是同时出现的。相信大伙深入到源码也能瞧出个大概,这里就献丑了 ㋛。
感兴趣的朋友可以搜一搜公众号「 阅新技术 」,关注更多的推送文章。
可以的话,就顺便点个赞、留个言、分享下,感谢各位支持!
阅新技术,阅读更多的新知识。